On the upper bound for the number of additional edges in minimal vertex extensions of colored circles
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 73-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the number of additional edges in the minimum vertex 1-extensions of cycles with the vertices of two types and a general construction of one of such extensions are given.
Keywords: graph, circle, minimal extension, fault-tolerance.
@article{PDMA_2013_6_a33,
     author = {P. P. Bondarenko},
     title = {On the upper bound for the number of additional edges in minimal vertex extensions of colored circles},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {73--75},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a33/}
}
TY  - JOUR
AU  - P. P. Bondarenko
TI  - On the upper bound for the number of additional edges in minimal vertex extensions of colored circles
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 73
EP  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a33/
LA  - ru
ID  - PDMA_2013_6_a33
ER  - 
%0 Journal Article
%A P. P. Bondarenko
%T On the upper bound for the number of additional edges in minimal vertex extensions of colored circles
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 73-75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a33/
%G ru
%F PDMA_2013_6_a33
P. P. Bondarenko. On the upper bound for the number of additional edges in minimal vertex extensions of colored circles. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 73-75. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a33/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR

[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012