On the upper bound for the number of additional edges in minimal vertex extensions of colored circles
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 73-75
Cet article a éte moissonné depuis la source Math-Net.Ru
An upper bound for the number of additional edges in the minimum vertex 1-extensions of cycles with the vertices of two types and a general construction of one of such extensions are given.
Keywords:
graph, circle, minimal extension, fault-tolerance.
@article{PDMA_2013_6_a33,
author = {P. P. Bondarenko},
title = {On the upper bound for the number of additional edges in minimal vertex extensions of colored circles},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {73--75},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a33/}
}
TY - JOUR AU - P. P. Bondarenko TI - On the upper bound for the number of additional edges in minimal vertex extensions of colored circles JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2013 SP - 73 EP - 75 IS - 6 UR - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a33/ LA - ru ID - PDMA_2013_6_a33 ER -
P. P. Bondarenko. On the upper bound for the number of additional edges in minimal vertex extensions of colored circles. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 73-75. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a33/