The second coordinate sequence of a linear recurrence of maximum period over ring $\mathbb{Z}_{8}$
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 9-10
Cet article a éte moissonné depuis la source Math-Net.Ru
The analytical structure of the second coordinate in a linear recurrence sequence over ring $\mathbb{Z}_{8}$ is described. The lower bound of its rank (linear complexity) is specified. The class of polynomials and recurrences of the maximum period with the highest possible rank is found.
Keywords:
linear recurring sequence, coordinate sequence, rank, analytical structure.
@article{PDMA_2013_6_a2,
author = {D. N. Bylkov},
title = {The second coordinate sequence of a linear recurrence of maximum period over ring $\mathbb{Z}_{8}$},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {9--10},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a2/}
}
TY - JOUR
AU - D. N. Bylkov
TI - The second coordinate sequence of a linear recurrence of maximum period over ring $\mathbb{Z}_{8}$
JO - Prikladnaya Diskretnaya Matematika. Supplement
PY - 2013
SP - 9
EP - 10
IS - 6
UR - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a2/
LA - ru
ID - PDMA_2013_6_a2
ER -
D. N. Bylkov. The second coordinate sequence of a linear recurrence of maximum period over ring $\mathbb{Z}_{8}$. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 9-10. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a2/
[1] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear Recurring Sequences over Rings and Modules”, J. Math. Sci. (New York), 76:6 (1995), 2793–2915 | DOI | MR
[2] Helleseth T., Martinsen H. M., “Binary sequences of period $2^m-1$ with large linear complexity”, Information and Computation, 151 (1999), 73–91 | DOI | MR
[3] Kurakin V. L., “Pervaya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad koltsom Galua”, Diskretnaya matematika, 6:2 (1994), 88–100