Absence of dynamism at method NFS
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 113-114
Cet article a éte moissonné depuis la source Math-Net.Ru
At present, the number field sieve (NFS) and a software package GGNFS are the primary tools for solving the factorization problem. Extrapolation of the data complexity of the algorithm NFS shows that it is impossible to apply this algorithm for factoring 768-bit or more modules. This work compares the evaluation of labor-intensiveness of sub-exponential algorithms of whole number factorization and evaluation of productivity of supercomputers from the Top 500 list. The conclusion following from the comparison is that these algorithms are now non-dynamic.
@article{PDMA_2012_5_a60,
author = {Y. L. Zachesov and A. M. Grishin},
title = {Absence of dynamism at method {NFS}},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {113--114},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a60/}
}
Y. L. Zachesov; A. M. Grishin. Absence of dynamism at method NFS. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 113-114. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a60/
[1] Informatsionnoe soobschenie o rekordnykh faktorizatsiyakh razlichnykh modulei RSA, http://www.crypto-world.com/FactorRecords.html
[2] Glukhov M. M., Kruglov I. A., Pichkur A. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Lan, M., 2011, 395 pp.
[3] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2006, 333 pp.
[4] Ofitsialnaya stranitsa Top500, http://www.top500.org/