Statistical independence of the Boolean function superposition.~II
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 14-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x,y,z$ be sets of different Boolean variables, $f(x,y)$, $f_1(x,y)$, $f_2(x,y)$, $f_1(x,y)\oplus f_2(x,y)$ are Boolean functions being statistically independent on the variables in $x$, and $h(x_1,x_2,z)$, $g(x)$ are any Boolean functions. Then the function $h(f_1(x,y),f_2(x,y),z)$ is statistically independent on the variables in $x$; and the same is true for the function $f(x,y)\oplus g(x)$ iff $f$ is balanced or $g=\mathrm{const}$.
@article{PDMA_2012_5_a5,
     author = {O. L. Kolcheva and I. A. Pankratova},
     title = {Statistical independence of the {Boolean} function {superposition.~II}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {14--15},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a5/}
}
TY  - JOUR
AU  - O. L. Kolcheva
AU  - I. A. Pankratova
TI  - Statistical independence of the Boolean function superposition.~II
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 14
EP  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a5/
LA  - ru
ID  - PDMA_2012_5_a5
ER  - 
%0 Journal Article
%A O. L. Kolcheva
%A I. A. Pankratova
%T Statistical independence of the Boolean function superposition.~II
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 14-15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a5/
%G ru
%F PDMA_2012_5_a5
O. L. Kolcheva; I. A. Pankratova. Statistical independence of the Boolean function superposition.~II. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 14-15. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a5/

[1] Agibalov G. P., Pankratova I. A., “Elementy teorii statisticheskikh analogov diskretnykh funktsii s primeneniem v kriptoanalize iterativnykh blochnykh shifrov”, Prikladnaya diskretnaya matematika, 2010, no. 3(9), 51–68

[2] Kolcheva O. L., Pankratova I. A., “O statisticheskoi nezavisimosti superpozitsii bulevykh funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2011, no. 4, 11–12