On interval edge $\Delta$-colouring
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 94-95
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that there is a $(6,3)$-biregular graph $G=(X,Y,E)$, such that $|X|+|Y|=33$, with no interval $6$-colourings, and it is proved that the $\Delta$-colouring problem for bipartite multigraph $G=(X,Y,E)$ is $NP$-complete even if $|X|=2$.
@article{PDMA_2012_5_a48,
author = {A. M. Magomedov},
title = {On interval edge $\Delta$-colouring},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {94--95},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a48/}
}
A. M. Magomedov. On interval edge $\Delta$-colouring. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 94-95. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a48/
[1] Asratyan A. S., Kamalyan R. R., “Intervalnye raskraski rëber multigrafa”, Prikladnaya matematika, 5, Izd-vo Erevan. un-ta, Erevan, 1987, 25–34 | MR
[2] Sevastyanov S. V., “Ob intervalnoi raskrashivaemosti rëber dvudolnogo grafa”, Metody diskretnogo analiza, 50, 1990, 61–72 | MR
[3] Asratian A. S., Casselgren C. J., Some results on interval edge colorings of ($\alpha,\beta$)-biregular bipartite graphs, Linköpingsuniversitet, Linköping, Sweden, 2006