On digraphs with a small number of arcs in a minimal $1$-vertex extension
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 86-88
Cet article a éte moissonné depuis la source Math-Net.Ru
A graph $G^*$ nodes is vertex extension of graph $G$ with $n$ nodes if every graph obtained by removing any vertex from $G^*$ contains $G$. Vertex extension of graph $G$ with $n+1$ vertices is called minimal if among all vertex extensions of graph $G$ with $n+1$ vertices it has the minimum possible number of edges. We study digraphs, whose minimal vertex extensions have a specified number of additional arcs. A solution is given when the number of additional arcs is equal to one or two.
@article{PDMA_2012_5_a43,
author = {M. B. Abrosimov and O. V. Modenova},
title = {On digraphs with a~small number of arcs in a~minimal $1$-vertex extension},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {86--88},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a43/}
}
TY - JOUR AU - M. B. Abrosimov AU - O. V. Modenova TI - On digraphs with a small number of arcs in a minimal $1$-vertex extension JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2012 SP - 86 EP - 88 IS - 5 UR - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a43/ LA - ru ID - PDMA_2012_5_a43 ER -
M. B. Abrosimov; O. V. Modenova. On digraphs with a small number of arcs in a minimal $1$-vertex extension. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 86-88. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a43/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[2] Abrosimov M. B., “Kharakterizatsiya grafov s zadannym chislom dopolnitelnykh reber minimalnogo vershinnogo 1-rasshireniya”, Prikladnaya diskretnaya matematika, 2012, no. 1, 111–120
[3] Abrosimov M. B., “Minimalnye vershinnye rasshireniya napravlennykh zvezd”, Diskretnaya matematika, 23:2 (2011), 93–102 | MR