On digraphs with a~small number of arcs in a~minimal $1$-vertex extension
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 86-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G^*$ nodes is vertex extension of graph $G$ with $n$ nodes if every graph obtained by removing any vertex from $G^*$ contains $G$. Vertex extension of graph $G$ with $n+1$ vertices is called minimal if among all vertex extensions of graph $G$ with $n+1$ vertices it has the minimum possible number of edges. We study digraphs, whose minimal vertex extensions have a specified number of additional arcs. A solution is given when the number of additional arcs is equal to one or two.
@article{PDMA_2012_5_a43,
     author = {M. B. Abrosimov and O. V. Modenova},
     title = {On digraphs with a~small number of arcs in a~minimal $1$-vertex extension},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {86--88},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a43/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - O. V. Modenova
TI  - On digraphs with a~small number of arcs in a~minimal $1$-vertex extension
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 86
EP  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a43/
LA  - ru
ID  - PDMA_2012_5_a43
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A O. V. Modenova
%T On digraphs with a~small number of arcs in a~minimal $1$-vertex extension
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 86-88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a43/
%G ru
%F PDMA_2012_5_a43
M. B. Abrosimov; O. V. Modenova. On digraphs with a~small number of arcs in a~minimal $1$-vertex extension. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 86-88. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a43/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl

[2] Abrosimov M. B., “Kharakterizatsiya grafov s zadannym chislom dopolnitelnykh reber minimalnogo vershinnogo 1-rasshireniya”, Prikladnaya diskretnaya matematika, 2012, no. 1, 111–120

[3] Abrosimov M. B., “Minimalnye vershinnye rasshireniya napravlennykh zvezd”, Diskretnaya matematika, 23:2 (2011), 93–102 | MR