On a~counterexample to a~minimal vertex $1$-extension of starlike trees
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 83-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given graph $G$ with $n$ nodes, we say that graph $G^*$ is its vertex extension if for each vertex $v$ of $G^*$ the subgraph $G^*-v$ contains graph $G$ up to isomorphism. A graph $G^*$ is a minimal vertex extension of the graph $G$ if $G^*$ has $n+1$ nodes and there is no vertex extension with $n+1$ nodes of $G$ having fewer edges than $G^*$. A tree is called starlike if it has exactly one node of degree greater than two. We give a lower and upper bounds of the edge number of a minimal vertex extension of a starlike tree and present trees for which these bounds are achieved.
@article{PDMA_2012_5_a41,
     author = {M. B. Abrosimov and D. D. Komarov},
     title = {On a~counterexample to a~minimal vertex $1$-extension of starlike trees},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {83--84},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a41/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - D. D. Komarov
TI  - On a~counterexample to a~minimal vertex $1$-extension of starlike trees
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 83
EP  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a41/
LA  - ru
ID  - PDMA_2012_5_a41
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A D. D. Komarov
%T On a~counterexample to a~minimal vertex $1$-extension of starlike trees
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 83-84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a41/
%G ru
%F PDMA_2012_5_a41
M. B. Abrosimov; D. D. Komarov. On a~counterexample to a~minimal vertex $1$-extension of starlike trees. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 83-84. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a41/

[1] Abrosimov M. B., “Minimalnye rasshireniya grafov”, Novye informatsionnye tekhnologii v issledovanii diskretnykh struktur, Tomsk, 2000, 59–64

[2] Harary F., Khurum M., “One node fault tolerance for caterpillars and starlike trees”, Internet J. Comput. Math., 56 (1995), 135–143 | DOI | Zbl

[3] Abrosimov M. B., Komarov D. D., Minimalnye vershinnye rasshireniya sverkhstroinykh derevev s malym chislom vershin, Dep. v VINITI 18.10.2010, No 7590-V, SGU, Saratov, 2010, 38 pp.