Latin squares and their applications in cryptography
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 30-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey contains examples of applications of Latin squares in cryptography.
@article{PDMA_2012_5_a15,
     author = {M. E. Tuzhilin},
     title = {Latin squares and their applications in cryptography},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {30--32},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a15/}
}
TY  - JOUR
AU  - M. E. Tuzhilin
TI  - Latin squares and their applications in cryptography
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 30
EP  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a15/
LA  - ru
ID  - PDMA_2012_5_a15
ER  - 
%0 Journal Article
%A M. E. Tuzhilin
%T Latin squares and their applications in cryptography
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 30-32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a15/
%G ru
%F PDMA_2012_5_a15
M. E. Tuzhilin. Latin squares and their applications in cryptography. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 30-32. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a15/

[1] McKay B. D., Wanless I. M., “On the number of Latin Squares”, Ann. Combin., 9:3 (2005), 335–344 | DOI | MR | Zbl

[2] Laywine C. F., Mullen G. L., Discrete mathematics using Latin squares, Wiley, New York, 1998 | MR | Zbl

[3] Trithemius J., Polygraphiae, 1518

[4] Shannon C., “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Designs, Codes and Cryptography, 15:2 (1998), 125–156 | DOI | MR

[5] Massey J. L., Maurer U., Wang M., “Non-Expanding, Key-Minimal, Robustly-Perfect, Linear and Bilinear Ciphers”, Adv. Cryptology – EUROCRYPT' 87, Springer Verlag, Berlin–Heidelberg, 1988, 237–247

[6] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2(2), 28–32

[7] Gligoroski D., Markovski S., Kocarev L., Gusev M., Edon80, http://www.ecrypt.eu.org/stream/edon80p3.html

[8] Lai X., Massey J., “A Proposal for a New Block Encryption Standard”, Adv. Cryptology – EUROCRYPT' 90, Springer Verlag, New York, 1991, 55–70 | MR

[9] Cooper J., Donovan D., Seberry J., “Secret Sharing Schemes Arising From Latin Squares”, Bulletin of the ICA, 12 (1994), 33–43 | MR | Zbl

[10] Chum C. S., Zhang X., “The Latin squares and the secret sharing schemes”, Groups Complex. Cryptol., 2 (2010), 175–202 | MR | Zbl

[11] Chum C. S., Hash functions, Latin squares and secret sharing schemes, ProQuest, New York, 2010

[12] Pal S. K., Bhardwaj D., Kumar R., Bhatia V., “A New Cryptographic Hash Function based on Latin Squares and Non-linear Transformations”, Adv. Comput. Conf. IACC, 2009, 862–867

[13] Gligoroski D., Ødegård R. S., Mihova M., et al., “Cryptographic Hash Function Edon-R”, Proc. IWSCN, 2009, 1–9

[14] Dènes J., Dènes T., “Non-associative algebraic system in cryptology. Protection against “meet in the middle” attack”, Quasigroups and Related Systems, 8 (2001), 7–14 | MR | Zbl

[15] Shcherbacov V. A., “Quasigroups in cryptology”, Comput. Sci. J. Moldova, 17:2(50) (2009), 193–228 | MR | Zbl