On decomposition of a~Boolean function into sum of bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012).

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, some new results on bent sum decomposition problem are discussed. It is proved that any Boolean function in $n$ variables of degree $d\leq n/2$ can be represented as the sum of not more than $2{2b\choose b}$ bent functions, where $b\geq d$ and $b$ is the least integer such that $2b|n$.
@article{PDMA_2012_5_a14,
     author = {N. N. Tokareva},
     title = {On decomposition of {a~Boolean} function into sum of bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {30},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a14/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - On decomposition of a~Boolean function into sum of bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a14/
LA  - ru
ID  - PDMA_2012_5_a14
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T On decomposition of a~Boolean function into sum of bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a14/
%G ru
%F PDMA_2012_5_a14
N. N. Tokareva. On decomposition of a~Boolean function into sum of bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012). http://geodesic.mathdoc.fr/item/PDMA_2012_5_a14/

[1] Tokareva N. N., “Gipotezy o chisle bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2011, no. 4, 21–23

[2] Tokareva N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. in Mathematics of Communications (AMC), 5:4 (2011), 609–621 | DOI | MR | Zbl

[3] Qu L., Li C., “Representing a Boolean function as the sum of two Bent functions”, Discrete Applied Mathematics, 2012 (to appear)