On decomposition of a Boolean function into sum of bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012)
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, some new results on bent sum decomposition problem are discussed. It is proved that any Boolean function in $n$ variables of degree $d\leq n/2$ can be represented as the sum of not more than $2{2b\choose b}$ bent functions, where $b\geq d$ and $b$ is the least integer such that $2b|n$.
@article{PDMA_2012_5_a14,
author = {N. N. Tokareva},
title = {On decomposition of {a~Boolean} function into sum of bent functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {30},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a14/}
}
N. N. Tokareva. On decomposition of a Boolean function into sum of bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012). http://geodesic.mathdoc.fr/item/PDMA_2012_5_a14/
[1] Tokareva N. N., “Gipotezy o chisle bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2011, no. 4, 21–23
[2] Tokareva N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. in Mathematics of Communications (AMC), 5:4 (2011), 609–621 | DOI | MR | Zbl
[3] Qu L., Li C., “Representing a Boolean function as the sum of two Bent functions”, Discrete Applied Mathematics, 2012 (to appear)