On almost balanced Boolean functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 23-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Boolean function is called correlation-immune of degree $n-m$ if it takes the value $1$ the same number of times for each $m$-dimensional face of the hypercube. Balanced correlation-immune function is called resilient. The almost balanced (or almost resilient) Boolean function is defined as a function taking values $1$ in a half or in a half plus or minus one of vertices in each face. Here, some constructions of almost balanced functions are proposed, some properties and a low bound for the number of these functions are established.
@article{PDMA_2012_5_a11,
     author = {V. N. Potapov},
     title = {On almost balanced {Boolean} functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {23--25},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a11/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - On almost balanced Boolean functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 23
EP  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a11/
LA  - ru
ID  - PDMA_2012_5_a11
ER  - 
%0 Journal Article
%A V. N. Potapov
%T On almost balanced Boolean functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 23-25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a11/
%G ru
%F PDMA_2012_5_a11
V. N. Potapov. On almost balanced Boolean functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 23-25. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a11/

[1] Fon-Der-Flaass D. G., “A bound of correlation immunity”, Siberian Electronic Mathematical Reports, 4 (2007), 133–135 | MR | Zbl

[2] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matematicheskie voprosy kibernetiki, 11, Fizmatlit, M., 2002, 91–148 | MR

[3] Vorobev K. V., Fon-Der-Flaass D. G., “O sovershennykh 2-raskraskakh giperkuba”, Sibirskie elektronnye matematicheskie izvestiya, 7 (2010), 65–75 | MR

[4] Potapov V. N., “O sovershennykh raskraskakh buleva $n$-kuba i korrelyatsionno-immunnykh funktsiyakh maloi plotnosti”, Sibirskie elektronnye matematicheskie izvestiya, 7 (2010), 372–382 | MR