Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$
Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 8-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for analyzing the linear complexity of generalized cyclotomic sequences with period $2^mp^n$ is proposed. It allows to pick out sequences with the high linear complexity. The linear complexity of some sequences is computed on the base of classes of quadratic and biquadratic residues.
@article{PDMA_2012_5_a1,
     author = {V. A. Edemskiy and O. V. Antonova},
     title = {Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {8--9},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2012_5_a1/}
}
TY  - JOUR
AU  - V. A. Edemskiy
AU  - O. V. Antonova
TI  - Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2012
SP  - 8
EP  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2012_5_a1/
LA  - ru
ID  - PDMA_2012_5_a1
ER  - 
%0 Journal Article
%A V. A. Edemskiy
%A O. V. Antonova
%T Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2012
%P 8-9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2012_5_a1/
%G ru
%F PDMA_2012_5_a1
V. A. Edemskiy; O. V. Antonova. Linear complexity of generalized cyclotomic sequences with period~$2^mp^n$. Prikladnaya Diskretnaya Matematika. Supplement, no. 5 (2012), pp. 8-9. http://geodesic.mathdoc.fr/item/PDMA_2012_5_a1/

[1] Edemskii V. A., “O lineinoi slozhnosti dvoichnykh posledovatelnostei na osnove klassov bikvadratichnykh i shesterichnykh vychetov”, Diskretnaya matematika, 22:1 (2010), 74–82 | MR | Zbl

[2] Edemskiy V. A., “About computation of the linear complexity of generalized cyclotomic sequences with period $p^{n+1}$”, Designs, Codes and Cryptography, 61:3 (2011), 251–260 | DOI | MR | Zbl

[3] Edemskii V. A., Antonova O. V., “Lineinaya slozhnost obobschënnykh tsiklotomicheskikh posledovatelnostei s periodom $2^mp^n$”, Prikladnaya diskretnaya matematika, 2012, no. 3, 5–12