@article{PA_2024_13_3_a5,
author = {M. Rafique and T. Nazir and H. Kalita},
title = {Fixed points of fuzzy multivalued $F$-contractive mappings with a directed graph in parametric metric spaces},
journal = {Problemy analiza},
pages = {79--100},
year = {2024},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a5/}
}
TY - JOUR AU - M. Rafique AU - T. Nazir AU - H. Kalita TI - Fixed points of fuzzy multivalued $F$-contractive mappings with a directed graph in parametric metric spaces JO - Problemy analiza PY - 2024 SP - 79 EP - 100 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/PA_2024_13_3_a5/ LA - en ID - PA_2024_13_3_a5 ER -
M. Rafique; T. Nazir; H. Kalita. Fixed points of fuzzy multivalued $F$-contractive mappings with a directed graph in parametric metric spaces. Problemy analiza, Tome 13 (2024) no. 3, pp. 79-100. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a5/
[1] Abbas M., Ali B., Romaguera S., “Fixed and periodic points of generalized contractions in metric spaces”, Fixed Point Theory Appl., 243 (2013), 1–11 | DOI | MR
[2] Abbas M., Alfuraidan M. R., Nazir T., “Common fixed points of multivalued F-contractions on metric spaces with a directed graph”, Carpathian J. Math., 32 (2016), 1–12 | DOI | MR | Zbl
[3] Abbas M., Nazir T., “Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph”, Fixed Point Theory Appl., 20 (2013), 01–08 | DOI | MR
[4] Abbas M., Rhoades B. E., “Fixed point theorems for two new classes of multi-valued mappings”, Appl. Math. Lett., 22 (2009), 1364–1368 | DOI | MR | Zbl
[5] Acar O., Durmaz G., Minak G., “Generalized multi-valued F-contractions on complete metric spaces”, Bulletin Iran. Math. Soc., 40 (2014), 1469–1478 | MR | Zbl
[6] Al-Mazrooei A. E., Ahmad J., “Fixed point theorems for fuzzy mappings with applications”, J. Intell. Fuzzy Syst., 36 (2019), 3903–3909 | DOI | MR
[7] Atanassov K. T., Intuitionistic fuzzy sets, Physica, 35, Heidelberg, 1999, 1–137 | DOI | MR
[8] Azam A., Arshad M., Vetro P., “On a pair of fuzzy $ \varphi $-contractive mappings”, Math. Comput. Modelling, 52 (2010), 207–214 | DOI | MR | Zbl
[9] Azam A., Beg I., “Common fixed points of fuzzy maps”, Math. Comput. Modelling, 49 (2009), 1331–1336 | DOI | MR | Zbl
[10] Berinde V., “Approximating fixed points of weak contractions using the Picard iteration”, Nonlinear Anal. Forum, 9 (2004), 43–53 | MR | Zbl
[11] Berinde M., Berinde V., “On a general class of multivalued weakly Picard mappings”, J. Math. Anal. Appl., 326 (2007), 772–782 | DOI | MR | Zbl
[12] Bose R. K., Sahani D., “Fuzzy mappings and fixed point theorems”, Fuzzy Sets and Systems, 21 (1987), 53–58 | DOI | MR | Zbl
[13] Goguen J. A., “L-fuzzy sets”, J. Math. Anal. Appl., 18 (1967), 145–174 | DOI | MR | Zbl
[14] Heilpern S., “Fuzzy mappings and fixed point theorem”, J. Math. Anal. Appl., 83 (1981), 566–569 | DOI | MR | Zbl
[15] Hussain N., Salimi P., Parvaneh V., “Fixed point results for various contractions in parametric and fuzzy b-metric spaces”, J. Nonlinear Sci. Appl., 8:5 (2015), 719–739 | DOI | MR | Zbl
[16] Shagari M. S., “On fuzzy soft set-valued maps with application”, J. Nig. Soc. Phys. Sci., 2 (2020), 26–35 | DOI | MR
[17] Shagari M. S., Azam A., “Fixed point theorems of fuzzy set-valued maps with applications”, Probl. Anal.-Issues Anal., 9 (2020), 68–86 | DOI | MR | Zbl
[18] Shagari M. S., Azam A., “Fixed points of soft-set valued and fuzzy set-valued maps with applications”, J. Intell. Fuzzy Syst., 37 (2019), 3865–3877 | DOI | MR
[19] Jachymski J., “The contraction principle for mappings on a metric space with a graph”, Proc. Amer. Math. Soc., 136 (2008), 1359–1373 | DOI | MR | Zbl
[20] Jachymski J., Jozwik I., “Nonlinear contractive conditions: a comparison and related problems”, Banach Center Publ., 77, 2007, 123–146 | DOI | MR | Zbl
[21] Kannan R., “Some results on fixed points”, Bull. Calcutta. Math. Soc., 60 (1968), 71–76 | DOI | MR | Zbl
[22] Latif A., Beg I., “Geometric fixed points for single and multivalued mappings”, Demonstratio Math., 30 (1997), 791–800 | DOI | MR | Zbl
[23] Markin J. T., “Continuous dependence of fixed point sets”, Proc. Amer. Math. Soc., 38 (1973), 545–547 | DOI | MR | Zbl
[24] Nadler S.B., “Multi-valued contraction mappings”, Pacific J. Math., 30 (1969), 475–488 | DOI | MR | Zbl
[25] Nieto J. J., Lopez R. R., “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order, 22 (2005), 223–239 | DOI | MR | Zbl
[26] Qiu D., Shu L., “Supremum metric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings”, Information Sciences, 178 (2008), 3595–3604 | DOI | MR | Zbl
[27] Ran A. C. M., Reurings M. C. B., “A fixed point theorem in partially ordered sets and some application to matrix equations”, Proc. Amer. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl
[28] Rus I. A., Petrusel A., Sintamarian A., “Data dependence of fixed point set of some multivalued weakly Picard operators”, Nonlinear Anal., 52:8 (2003), 1944–1959 | DOI | MR
[29] Sgroi M., Vetro C., “Multi-valued F-contractions and the solution of certain functional and integral equations”, Filomat, 27:7 (2013), 1259–1268 | DOI | MR | Zbl
[30] Wardowski D., “Fixed points of new type of contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 94 (2012), 01–06 | DOI | MR
[31] Zadeh L. A., “Fuzzy sets”, Information and Control, 8 (1965), 338–353 | DOI | MR | Zbl