Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_3_a2, author = {J. Hossain and S. Debnath}, title = {On $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers}, journal = {Problemy analiza}, pages = {43--55}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a2/} }
J. Hossain; S. Debnath. On $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers. Problemy analiza, Tome 13 (2024) no. 3, pp. 43-55. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a2/
[1] Bera S., Tripathy B. C., “Statistical convergence in a bi-complex valued metric space”, Ural Math. J., 9:1 (2023), 49–63 | DOI | MR
[2] Bera S., Tripathy B. C., “Statistical bounded sequences of bi-complex numbers”, Probl. Anal. Issues Anal., 12(30):2 (2023), 3–16 | DOI | MR | Zbl
[3] Choudhury C., Debnath S., “On $\mathcal{I}$-convergence of sequences in gradual normed linear spaces”, Facta. Univ. Ser. Math. Inform., 36:3 (2021), 595–604 | DOI | MR | Zbl
[4] Das P., Sleziak M., Toma V., “$\mathcal{I}^{\mathcal{K}}$- Cauchy functions”, Comp and Math with Appli., 173 (2014), 9–27 | DOI | MR | Zbl
[5] Debnath S., Choudhury C. On some properties of $\mathcal{I}^{K}$-convergence, Palest. J. Math., 11:2 (2022), 129–135 | MR | Zbl
[6] Debnath S., Rakshit D., “On $\mathcal{I}$-statistical convergence”, Iran. J. Math. Sci. Inform., 13:2 (2018), 101–109 | DOI | MR | Zbl
[7] Kostyrko P., Salat T., Wilczynski W., “$\mathcal{I}$-convergence”, Real. Anal. Exch., 26:2 (2000/2001), 669–686 | DOI | MR
[8] Macaj M., Sleziak M., “$\mathcal{I}^{\mathcal{K}}$-Convergence”, Real. Anal. Exch., 36 (2010–2011), 177–194 | DOI | MR
[9] Mursaleen M., Debnath S., Rakshit D., “$\mathcal{I}$-statistical limit superior and $\mathcal{I}$-statistical limit inferior”, Filomat, 31:7 (2017), 2103–2108 | DOI | MR | Zbl
[10] Nabiev A., Pehlivan S., Gurdal M., “On $\mathcal{I}$-Cauchy sequences”, Taiwanese J. Math., 11:2 (2007), 569–576 | DOI | MR | Zbl
[11] Price G. B., An Introduction to Multi-complex Spaces and Functions, Monographs and Text books in Pure and Applied Mathematics, Marcel Dekker. Inc., New York, 1991 | MR
[12] Rochon D., Shapiro M., “On algebraic properties of bi complex and hyperbolic numbers”, Anal. Univ. Oradea, Fasc. Math., 11 (2004), 71–110 | MR | Zbl
[13] Savas E., Das P., “A generalized statistical convergence via ideals”, Appl. Math. Lett., 24:6 (2011), 826–830 | DOI | MR | Zbl
[14] Scorza D. G., “Sulla rappresentazione delle funzioni di variabile bicomplessa totalmente derivabili”, Ann. Mat., 5 (1934), 597–665 | Zbl
[15] Segre C., “Le rappresentation reali delle forme complesse e gli enti iperalgebrici”, Math. Ann., 40 (1892), 413–467 (in Italian) | DOI | MR
[16] Spampinato N., “Estensione nel campo bicomplesso di due teoremi, del levi-Civita e del severi, per le funxione olomorfe di due variabili bicomplesse I, II”, Reale Accad. Naz. Lincei, 22:6 (1935), 96–102 | Zbl