On $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers
Problemy analiza, Tome 13 (2024) no. 3, pp. 43-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the concept of $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers. We explore the fundamental properties of this newly introduced notion and its relationships with other convergence methods.
Keywords: bi-complex number, ideal, filter, $\mathcal{I}$-convergence, $\mathcal{I}^*$-convergence, $\mathcal{I}^{\mathcal{K}}$-convergence.
@article{PA_2024_13_3_a2,
     author = {J. Hossain and S. Debnath},
     title = {On $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers},
     journal = {Problemy analiza},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a2/}
}
TY  - JOUR
AU  - J. Hossain
AU  - S. Debnath
TI  - On $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers
JO  - Problemy analiza
PY  - 2024
SP  - 43
EP  - 55
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_3_a2/
LA  - en
ID  - PA_2024_13_3_a2
ER  - 
%0 Journal Article
%A J. Hossain
%A S. Debnath
%T On $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers
%J Problemy analiza
%D 2024
%P 43-55
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_3_a2/
%G en
%F PA_2024_13_3_a2
J. Hossain; S. Debnath. On $\mathcal{I}^{\mathcal{K}}$-convergence of sequences of bi-complex numbers. Problemy analiza, Tome 13 (2024) no. 3, pp. 43-55. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a2/