Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_3_a1, author = {A. Das and D. Barman and T. Bag}, title = {A new generalization of {George} \& {Veeramani-type} fuzzy metric space}, journal = {Problemy analiza}, pages = {23--42}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a1/} }
A. Das; D. Barman; T. Bag. A new generalization of George \& Veeramani-type fuzzy metric space. Problemy analiza, Tome 13 (2024) no. 3, pp. 23-42. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a1/
[1] Czerwik S., “Contraction mappings in b-metric spaces”, Acta. Math. Inform. Univ. Ostraviensis, 1:1 (1993), 5–11 | MR | Zbl
[2] Das A., Kundu A., Bag T., “A new approach to generalize metric functions”, Int. J. of Nonlinear Anal. Appl., 14:3 (2023), 279–298 | DOI
[3] Das A., Bag T., “A generalization to parametric metric spaces”, Int. J. Nonlinear Anal. Appl., 14:2 (2023), 229–244 | DOI | MR
[4] George A., Veeramani P., “On some results in fuzzy metric spaces”, Fuzzy Sets Systems, 64:3 (1994), 395–399 | DOI | MR | Zbl
[5] Ghosh S., Saha P., Roy S., Choudhury B. S., “Strong coupled fixed points and applications to fractal generations in fuzzy metric spaces”, Probl. Anal. Issues Anal., 12(30):3 (2023), 50–68 | DOI | MR | Zbl
[6] Huang L. G., Zhang X., “Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl., 332:2 (2007), 1468–1476 | DOI | MR | Zbl
[7] Jleli M., Samet B., “On a new generalization of metric spaces”, Journal of Fixed Point Theory and Applications, 20:3 (2018), 128 | DOI | MR | Zbl
[8] Kalita H., “The weak drop property and the de la vallee poussin theorem”, Probl. Anal. Issues Anal., 12(30):3 (2023), 105–118 | DOI | MR
[9] Kirk W., Shahazad N., Fixed Point Theory in Distance Spaces, Springer, Cham, 2014 | MR | Zbl
[10] Klir G., Yuan B., Fuzzy Sets and Fuzzy Logic, Printice-Hall of India Private Limited, New Delhi-110001, 1997 | MR
[11] Kramosil O., Michalek J., “Fuzzy metric and statistical metric spaces”, Kybernetica, 11:5 (1975), 326–334 | MR
[12] Mustafa Z., Sims B., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal., 7:2 (2006), 289–297 | MR | Zbl
[13] Nadaban S., “Fuzzy b-Metric space”, International Journal of Computers Communications Control, 11:2 (2016), 273–281 | DOI
[14] Puvar S. V., Vyas R. G., “Rational type cyclic contraction in G-metric spaces”, Probl. Anal. Issues Anal., 12(30):3 (2023), 119–131 | DOI | MR | Zbl
[15] Sedghi S., Shobe N., Aliouche A., “A generalization of fixed point theorems in S-metric spaces”, Matematiqki Vesnik, 64:249 (2012), 258–266 | MR | Zbl