A new generalization of George \ Veeramani-type fuzzy metric space
Problemy analiza, Tome 13 (2024) no. 3, pp. 23-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, a concept of fuzzy $ \mathscr{F} $-metric space, which is a generalization of George Veeramani-type fuzzy metric space, is introduced. Concepts of convergent sequence, Cauchy sequence, completeness etc. are given, and we study some properties in such spaces. Finally, some topological results are established.
Keywords: fuzzy metric, fuzzy $b$-metric, fuzzy $ \mathscr{F}$-metric.
Mots-clés : $t$-norm
@article{PA_2024_13_3_a1,
     author = {A. Das and D. Barman and T. Bag},
     title = {A new generalization of {George} \& {Veeramani-type} fuzzy metric space},
     journal = {Problemy analiza},
     pages = {23--42},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_3_a1/}
}
TY  - JOUR
AU  - A. Das
AU  - D. Barman
AU  - T. Bag
TI  - A new generalization of George \& Veeramani-type fuzzy metric space
JO  - Problemy analiza
PY  - 2024
SP  - 23
EP  - 42
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_3_a1/
LA  - en
ID  - PA_2024_13_3_a1
ER  - 
%0 Journal Article
%A A. Das
%A D. Barman
%A T. Bag
%T A new generalization of George \& Veeramani-type fuzzy metric space
%J Problemy analiza
%D 2024
%P 23-42
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_3_a1/
%G en
%F PA_2024_13_3_a1
A. Das; D. Barman; T. Bag. A new generalization of George \& Veeramani-type fuzzy metric space. Problemy analiza, Tome 13 (2024) no. 3, pp. 23-42. http://geodesic.mathdoc.fr/item/PA_2024_13_3_a1/

[1] Czerwik S., “Contraction mappings in b-metric spaces”, Acta. Math. Inform. Univ. Ostraviensis, 1:1 (1993), 5–11 | MR | Zbl

[2] Das A., Kundu A., Bag T., “A new approach to generalize metric functions”, Int. J. of Nonlinear Anal. Appl., 14:3 (2023), 279–298 | DOI

[3] Das A., Bag T., “A generalization to parametric metric spaces”, Int. J. Nonlinear Anal. Appl., 14:2 (2023), 229–244 | DOI | MR

[4] George A., Veeramani P., “On some results in fuzzy metric spaces”, Fuzzy Sets Systems, 64:3 (1994), 395–399 | DOI | MR | Zbl

[5] Ghosh S., Saha P., Roy S., Choudhury B. S., “Strong coupled fixed points and applications to fractal generations in fuzzy metric spaces”, Probl. Anal. Issues Anal., 12(30):3 (2023), 50–68 | DOI | MR | Zbl

[6] Huang L. G., Zhang X., “Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl., 332:2 (2007), 1468–1476 | DOI | MR | Zbl

[7] Jleli M., Samet B., “On a new generalization of metric spaces”, Journal of Fixed Point Theory and Applications, 20:3 (2018), 128 | DOI | MR | Zbl

[8] Kalita H., “The weak drop property and the de la vallee poussin theorem”, Probl. Anal. Issues Anal., 12(30):3 (2023), 105–118 | DOI | MR

[9] Kirk W., Shahazad N., Fixed Point Theory in Distance Spaces, Springer, Cham, 2014 | MR | Zbl

[10] Klir G., Yuan B., Fuzzy Sets and Fuzzy Logic, Printice-Hall of India Private Limited, New Delhi-110001, 1997 | MR

[11] Kramosil O., Michalek J., “Fuzzy metric and statistical metric spaces”, Kybernetica, 11:5 (1975), 326–334 | MR

[12] Mustafa Z., Sims B., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal., 7:2 (2006), 289–297 | MR | Zbl

[13] Nadaban S., “Fuzzy b-Metric space”, International Journal of Computers Communications Control, 11:2 (2016), 273–281 | DOI

[14] Puvar S. V., Vyas R. G., “Rational type cyclic contraction in G-metric spaces”, Probl. Anal. Issues Anal., 12(30):3 (2023), 119–131 | DOI | MR | Zbl

[15] Sedghi S., Shobe N., Aliouche A., “A generalization of fixed point theorems in S-metric spaces”, Matematiqki Vesnik, 64:249 (2012), 258–266 | MR | Zbl