Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_2_a5, author = {J. E. N\'apoles and P. M. Guzm\'an and B. Bayraktar}, title = {Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets}, journal = {Problemy analiza}, pages = {106--127}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a5/} }
TY - JOUR AU - J. E. Nápoles AU - P. M. Guzmán AU - B. Bayraktar TI - Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets JO - Problemy analiza PY - 2024 SP - 106 EP - 127 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a5/ LA - en ID - PA_2024_13_2_a5 ER -
J. E. Nápoles; P. M. Guzmán; B. Bayraktar. Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets. Problemy analiza, Tome 13 (2024) no. 2, pp. 106-127. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a5/
[1] Abdeljawad T., Rashid S., Hammouch Z., Chu Y., “Some new local fractional inequalities associated with generalized $(s,m)$-convex functions and applications”, Advances in Difference Equations, 2020 (2020), 406 | DOI | MR | Zbl
[2] Agarwal P., Jleli M., Tomar M., “Certain Hermite-Hadamard type inequalities via generalized $k-$fractional integrals”, J. Inequal. Appl., 2017, 55 | DOI | MR
[3] Akdemir A. O., Deniz E., Yukse E., “On Some Integral Inequalities via Conformable Fractional Integrals”, Applied Mathematics and Nonlinear Sciences, 6:1 (2021), 489–498 | DOI | MR | Zbl
[4] Akkurt A., Yildirim M. E., Yildirim H., “On some integral inequalities for $(k,h)-$Riemann-Liouville fractional integral”, NTMSCI, 4:1 (2016), 138–146 | DOI | MR
[5] Alomari M. W., “A companion of the generalized trapezoid inequality and applications”, J. Math. Appl., 36 (2013), 5–15 | DOI | MR | Zbl
[6] Al-Sa'di S., Bibi M., Seol Y., Muddassar M., “Milne-Type Fractal Integral Inequalities For Generalized $m-$Convex Mapping”, Fractals, 31:5 (2023), 2350081 | DOI | Zbl
[7] Bayraktar B., Nápoles V. J. E., “New Generalized Integral inequalities Via $(h, m)$-Convex Modified Functions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 60 (2022), 3–15 | DOI | MR | Zbl
[8] Bayraktar B., Nápoles V. J. E., Rabossi F., “On Generalizations Of Integral Inequalities”, Probl. Anal. – Issues Anal., 11(29):2 (2022), 3–23 | DOI | MR | Zbl
[9] Bayraktar B., Özdemir M. E., “Generalization Of Hadamard-Type Trapezoid Inequalities For Fractional Integral Operators”, Ufa Mathematical Journal, 13:1 (2021), 119–130 | DOI | MR | Zbl
[10] Bayraktar B., “Some New Generalizations Of Hadamard-Type Midpoint Inequalities Involving Fractional Integrals”, Probl. Anal. – Issues Anal., 9(27):3 (2020), 66–82 | DOI | MR | Zbl
[11] Breckner W. W., “Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen”, Pupl. Inst. Math., 23 (1978), 13–20 | MR | Zbl
[12] Bruckner A. M., Ostrow E., “Some Function Classes Related To The Class Of Convex Functions”, Pacific J. Math., 12 (1962), 1203–1215 | DOI | MR | Zbl
[13] Budak H., Hyder A., “Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities”, AIMS Mathematics, 8:12 (2023), 30760–30776 | DOI | MR
[14] Budak H., Kösem P., Kara H., “On new Milne-type inequalities for fractional integrals”, J. Inequal. Appl., 2023 (2023), 10 | DOI | MR | Zbl
[15] Çelik B., Budak H., Set E., “On Generalized Milne Type inequalities For New Conformable Fractional Integrals”, Filomat, 38:5 (2024), 1807–1823 | DOI | MR
[16] Cerone P., Dragomir S. S., “Trapezoidal-type rules from an inequalities point of view”, Handbook of analytic-computational methods in applied mathematics, ed. G. Anastassiou, CRC Press, New York, 2000 | MR
[17] G.-S. Chen, “Generalizations of Holder's and Some Related Integral Inequalities on Fractal Space”, Journal of Function Spaces, 2013 (2013), 198405 | DOI | MR | Zbl
[18] Chen J., Huang X., “Some new inequalities of Simpson's type for $s$-convex functions via fractional integrals”, Filomat, 31:15 (2017), 4989–4997 | DOI | MR | Zbl
[19] Dragomir S. S., Agarwal R., “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula”, Appl. Math. Lett., 11 (1998), 91–95 | DOI | MR | Zbl
[20] Dragomir S. S., “On trapezoid quadrature formula and applications”, Kragujevac. J. Math., 23 (2001), 25–36 | MR | Zbl
[21] Du T., Wang H., Adil Khan M., Zhang Y., “Certain integral inequalities considering generalized $m-$convexity of fractals sets and their applications”, Fractals, 27:7 (2019), 1–17 | DOI | MR
[22] Kirmaci U. S., “Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula”, Appl. Math. Comput., 147 (2004), 137–146 | DOI | MR | Zbl
[23] Mo H. X., Sui X., “Generalized $s-$convex function on fractal sets”, Abstr. Appl. Anal., 2014 (2014), 254737 | DOI | MR | Zbl
[24] Mo H., Sui X., Yu D., “Generalized Convex Functions on Fractal Sets and Two Related Inequalities”, Abstract and Applied Analysis, 2014 (2014), 636751 | DOI | MR | Zbl
[25] Nápoles V. J. E., Quevedo Cubillos M. N., Bayraktar B., “Integral inequalities of Simpson type via weighted integrals”, Probl. Anal. – Issues Anal., 12(30):2 (2023), 68–86 | DOI | MR
[26] Nápoles J. E., Rabossi F., Samaniego A. D., Convex functions: Ariadne's thread or Charlotte's spiderweb?, Advanced Mathematical Models Applications, 5:2 (2020), 176–191
[27] Sarikaya M. Z., Set E., Yaldiz H., Basak N., “Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities”, Math. Comput. Model., 57 (2013), 2403–2407 | DOI | MR | Zbl
[28] Siala I. B., Budak H., Alic M. A., “Some Milne's rule type inequalities in quantum calculus”, Filomat, 37:27 (2023), 9119–9134 | DOI | MR
[29] Toader G., “Some generalizations of the convexity”, Proceedings of the Colloquium on Approximation and Optimization, University Cluj-Napoca, 1985, 329–338 | MR
[30] Yang X.-J., Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012
[31] Yang X., Local Fractional Functional Analysis and Its Applications, Asian Academic publisher Limited, Hong Kong, 2011