Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets
Problemy analiza, Tome 13 (2024) no. 2, pp. 106-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, new versions of integral inequalities of Milne type are derived for $(h, m)$-convex modified functions of the second type on fractal sets. Based on a new generalized local fractional weighted integral operator, an identity is established as the foundation for subsequently obtained inequalities. Throughout our study, we obtained certain results known in the literature, which include particular cases of our findings.
Keywords: local fractional derivatives, local fractional integrals, Milne inequality, $(h,m)$-convex modified functions of second type, Hölder inequality, power mean inequality.
Mots-clés : fractal sets
@article{PA_2024_13_2_a5,
     author = {J. E. N\'apoles and P. M. Guzm\'an and B. Bayraktar},
     title = {Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets},
     journal = {Problemy analiza},
     pages = {106--127},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_2_a5/}
}
TY  - JOUR
AU  - J. E. Nápoles
AU  - P. M. Guzmán
AU  - B. Bayraktar
TI  - Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets
JO  - Problemy analiza
PY  - 2024
SP  - 106
EP  - 127
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_2_a5/
LA  - en
ID  - PA_2024_13_2_a5
ER  - 
%0 Journal Article
%A J. E. Nápoles
%A P. M. Guzmán
%A B. Bayraktar
%T Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets
%J Problemy analiza
%D 2024
%P 106-127
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_2_a5/
%G en
%F PA_2024_13_2_a5
J. E. Nápoles; P. M. Guzmán; B. Bayraktar. Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets. Problemy analiza, Tome 13 (2024) no. 2, pp. 106-127. http://geodesic.mathdoc.fr/item/PA_2024_13_2_a5/

[1] Abdeljawad T., Rashid S., Hammouch Z., Chu Y., “Some new local fractional inequalities associated with generalized $(s,m)$-convex functions and applications”, Advances in Difference Equations, 2020 (2020), 406 | DOI | MR | Zbl

[2] Agarwal P., Jleli M., Tomar M., “Certain Hermite-Hadamard type inequalities via generalized $k-$fractional integrals”, J. Inequal. Appl., 2017, 55 | DOI | MR

[3] Akdemir A. O., Deniz E., Yukse E., “On Some Integral Inequalities via Conformable Fractional Integrals”, Applied Mathematics and Nonlinear Sciences, 6:1 (2021), 489–498 | DOI | MR | Zbl

[4] Akkurt A., Yildirim M. E., Yildirim H., “On some integral inequalities for $(k,h)-$Riemann-Liouville fractional integral”, NTMSCI, 4:1 (2016), 138–146 | DOI | MR

[5] Alomari M. W., “A companion of the generalized trapezoid inequality and applications”, J. Math. Appl., 36 (2013), 5–15 | DOI | MR | Zbl

[6] Al-Sa'di S., Bibi M., Seol Y., Muddassar M., “Milne-Type Fractal Integral Inequalities For Generalized $m-$Convex Mapping”, Fractals, 31:5 (2023), 2350081 | DOI | Zbl

[7] Bayraktar B., Nápoles V. J. E., “New Generalized Integral inequalities Via $(h, m)$-Convex Modified Functions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 60 (2022), 3–15 | DOI | MR | Zbl

[8] Bayraktar B., Nápoles V. J. E., Rabossi F., “On Generalizations Of Integral Inequalities”, Probl. Anal. – Issues Anal., 11(29):2 (2022), 3–23 | DOI | MR | Zbl

[9] Bayraktar B., Özdemir M. E., “Generalization Of Hadamard-Type Trapezoid Inequalities For Fractional Integral Operators”, Ufa Mathematical Journal, 13:1 (2021), 119–130 | DOI | MR | Zbl

[10] Bayraktar B., “Some New Generalizations Of Hadamard-Type Midpoint Inequalities Involving Fractional Integrals”, Probl. Anal. – Issues Anal., 9(27):3 (2020), 66–82 | DOI | MR | Zbl

[11] Breckner W. W., “Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen”, Pupl. Inst. Math., 23 (1978), 13–20 | MR | Zbl

[12] Bruckner A. M., Ostrow E., “Some Function Classes Related To The Class Of Convex Functions”, Pacific J. Math., 12 (1962), 1203–1215 | DOI | MR | Zbl

[13] Budak H., Hyder A., “Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities”, AIMS Mathematics, 8:12 (2023), 30760–30776 | DOI | MR

[14] Budak H., Kösem P., Kara H., “On new Milne-type inequalities for fractional integrals”, J. Inequal. Appl., 2023 (2023), 10 | DOI | MR | Zbl

[15] Çelik B., Budak H., Set E., “On Generalized Milne Type inequalities For New Conformable Fractional Integrals”, Filomat, 38:5 (2024), 1807–1823 | DOI | MR

[16] Cerone P., Dragomir S. S., “Trapezoidal-type rules from an inequalities point of view”, Handbook of analytic-computational methods in applied mathematics, ed. G. Anastassiou, CRC Press, New York, 2000 | MR

[17] G.-S. Chen, “Generalizations of Holder's and Some Related Integral Inequalities on Fractal Space”, Journal of Function Spaces, 2013 (2013), 198405 | DOI | MR | Zbl

[18] Chen J., Huang X., “Some new inequalities of Simpson's type for $s$-convex functions via fractional integrals”, Filomat, 31:15 (2017), 4989–4997 | DOI | MR | Zbl

[19] Dragomir S. S., Agarwal R., “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula”, Appl. Math. Lett., 11 (1998), 91–95 | DOI | MR | Zbl

[20] Dragomir S. S., “On trapezoid quadrature formula and applications”, Kragujevac. J. Math., 23 (2001), 25–36 | MR | Zbl

[21] Du T., Wang H., Adil Khan M., Zhang Y., “Certain integral inequalities considering generalized $m-$convexity of fractals sets and their applications”, Fractals, 27:7 (2019), 1–17 | DOI | MR

[22] Kirmaci U. S., “Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula”, Appl. Math. Comput., 147 (2004), 137–146 | DOI | MR | Zbl

[23] Mo H. X., Sui X., “Generalized $s-$convex function on fractal sets”, Abstr. Appl. Anal., 2014 (2014), 254737 | DOI | MR | Zbl

[24] Mo H., Sui X., Yu D., “Generalized Convex Functions on Fractal Sets and Two Related Inequalities”, Abstract and Applied Analysis, 2014 (2014), 636751 | DOI | MR | Zbl

[25] Nápoles V. J. E., Quevedo Cubillos M. N., Bayraktar B., “Integral inequalities of Simpson type via weighted integrals”, Probl. Anal. – Issues Anal., 12(30):2 (2023), 68–86 | DOI | MR

[26] Nápoles J. E., Rabossi F., Samaniego A. D., Convex functions: Ariadne's thread or Charlotte's spiderweb?, Advanced Mathematical Models Applications, 5:2 (2020), 176–191

[27] Sarikaya M. Z., Set E., Yaldiz H., Basak N., “Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities”, Math. Comput. Model., 57 (2013), 2403–2407 | DOI | MR | Zbl

[28] Siala I. B., Budak H., Alic M. A., “Some Milne's rule type inequalities in quantum calculus”, Filomat, 37:27 (2023), 9119–9134 | DOI | MR

[29] Toader G., “Some generalizations of the convexity”, Proceedings of the Colloquium on Approximation and Optimization, University Cluj-Napoca, 1985, 329–338 | MR

[30] Yang X.-J., Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012

[31] Yang X., Local Fractional Functional Analysis and Its Applications, Asian Academic publisher Limited, Hong Kong, 2011