A new approach to Jaggi--Wardowski-type fixed point theorems
Problemy analiza, Tome 13 (2024) no. 1, pp. 50-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this manuscript, the concept of Jaggi-type hybrid ($G$, $\varphi$, $F$)-contraction is introduced. Some novel fixed point theorems that cannot be inferred from their cognate ones in both metric and quasi metric spaces are established. A non-trivial example is also provided to support the assumptions forming our obtained theorems. As an application, one of our results is utilized to study new conditions for the existence and uniqueness of a solution to a Fredholm-type integral equation.
Keywords: $F$-contraction, $G$-metric, fixed point, hybrid contraction.
@article{PA_2024_13_1_a3,
     author = {M. Sh. Shagari and R. O. Ogbumba and S. Yahaya},
     title = {A new approach to {Jaggi--Wardowski-type} fixed point theorems},
     journal = {Problemy analiza},
     pages = {50--70},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a3/}
}
TY  - JOUR
AU  - M. Sh. Shagari
AU  - R. O. Ogbumba
AU  - S. Yahaya
TI  - A new approach to Jaggi--Wardowski-type fixed point theorems
JO  - Problemy analiza
PY  - 2024
SP  - 50
EP  - 70
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a3/
LA  - en
ID  - PA_2024_13_1_a3
ER  - 
%0 Journal Article
%A M. Sh. Shagari
%A R. O. Ogbumba
%A S. Yahaya
%T A new approach to Jaggi--Wardowski-type fixed point theorems
%J Problemy analiza
%D 2024
%P 50-70
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a3/
%G en
%F PA_2024_13_1_a3
M. Sh. Shagari; R. O. Ogbumba; S. Yahaya. A new approach to Jaggi--Wardowski-type fixed point theorems. Problemy analiza, Tome 13 (2024) no. 1, pp. 50-70. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a3/

[1] Agarwal R. P., Aksoy Ü., Karapinar E., Erhan İ. M., “F-contraction mappings on metric-like spaces in connection with integral equations on time scales”, RACSAM, 114(147):3 (2020), 1–12 | DOI | MR

[2] Alghamdi M., Karap?nar E., “$(G-\beta-\psi)$-contractive type mappings in $G$-metric spaces”, Fixed Point Theory Appl., 2013:1 (2013), 1–17 | DOI | MR

[3] Jaid A., Touail Y., El Moutawakil D., “On $\mu F$-contraction: new types of fixed points and common fixed points in Banach spaces”, Asian-Eur. J. Math., 16:11 (2023) | DOI | MR

[4] Aryanpour L., Rahimi H., Soleimani Rad G., “Fixed point results for Hardy-Rogers type contractions with respect to a C-distance in graphical cone metric spaces”, Probl. Anal. Issues Anal., 9:1 (2020), 27–37 | DOI | MR

[5] Banach S., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3:1 (1922), 133–181 | DOI | MR

[6] Chen J., Zhu C., Zhu L., “A note on some fixed point theorems on $G$-metric spaces”, J. Appl. Anal. Comput., 11:1 (2021), 101–112 | DOI | MR

[7] Cho Y. J., “Survey on metric fixed point theory and applications”, Adv. Real Complex Anal. Appl., 2017 (2017), 183–241 | MR | Zbl

[8] Choudhury B. S., Metiya N., Kundu S., “A multivalued fixed point result with associated data dependence and stability study”, Probl. Anal. Issues Anal., 11:1 (2022), 45–57 | DOI | MR | Zbl

[9] Cosentino M., Vetro P., “Fixed point results for $F$-contractive mappings of Hardy-Rogers-type”, Filomat, 28:4 (2014), 715–722 | DOI | MR

[10] Dhage B. C., “Generalized metric space and mapping with fixed point”, Bull. Calcutta Math. Soc., 1992 (1992), 329–336 | MR | Zbl

[11] Fabiano N., Kadelburg Z., Mirkov N., Čavić V. S., Radenović S., “On F-contractions: A survey”, Contemp. Math., 2022, 2022, 327–342 | DOI

[12] Jaggi D. S., “Some unique fixed point theorems”, Indian J. Pure Appl. Math., 8:2 (1977), 223–230 | MR | Zbl

[13] Jiddah J. A., Mohammed S. S., Alansari M., Mohamed S. K., Bakery A., “Fixed point results of Jaggi-type hybrid contraction in generalized metric space”, J. Funct. Spaces, 2022 (2022), 1–9 | DOI | MR

[14] Jleli M., Samet B., “Remarks on $G$-metric spaces and fixed point theorems”, Fixed Point Theory Appl., 2012, 1–7 | DOI | MR

[15] Joshi V., Jain S., “G-metric spaces: From the perspective of F-contractions and best proximity points”, Metric Structures and Fixed Point Theory, 2021, Chapman and Hall/CRC, 2021, 103–148 | DOI | MR

[16] Karap?nar E., Agarwal R. P., “Further fixed point results on $G$-metric space”, Fixed Point Theory Appl., 2013(154):1 (2013), 1–14 | DOI | MR | Zbl

[17] Lotfali Ghasab E., Majani H., Soleimani Rad G., “Fixed points of set-valued $F$-contraction operators in quasi-ordered metric spaces with an application to integral equations”, J. Siberian Fed. Univ. Math. Phys., 14:2 (2021), 150–158 | MR

[18] Mohammed S. S., Alansari M., Azam A., Kanwal S., “Fixed points of ($\varphi$,$F$)-weak contractions on metric-like spaces with applications to integral equations on time scales”, Bol. Soc. Mat. Mex., 27(39) (2021), 1–21 | DOI | MR

[19] Mustafa Z., A new structure for generalized metric spaces - with applications to fixed point theory, PhD Thesis, Univ. of Newcastle, 2005, 10 pp.

[20] Mustafa Z., Sims B., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal., 7:2 (2006), 289–297 | MR | Zbl

[21] Mustafa Z., Obiedat H., Awawdeh F., “Some fixed point theorem for mapping on complete $G$-metric spaces”, Fixed Point Theory Appl., 2008 (2008), 1–12 | DOI | MR

[22] Ogbumba R. O., Shagari M. S., Alansari M., Khalid T. A., Mohamed E. A., Bakery A. A., “Advancements in hybrid fixed point results and F-contractive operators”, Symmetry, 15:6 (2023), 1253–1270 | DOI

[23] Piri H., Kumam P., “Some fixed point theorems concerning $F$-contraction in complete metric spaces”, Fixed Point Theory Appl., 2014(210):1 (2014), 1–11 | DOI | MR

[24] Samet B., Vetro C., Vetro F., “Remarks on $G$-metric spaces”, Int. J. Anal., 2013 (2013), 1–6 | DOI | MR

[25] Secelean N. A., “Iterated function systems consisting of F-contractions”, Fixed Point Theory Appl., 2013:1 (2013), 1–13 | DOI | MR

[26] Secelean N. A., Wardowski D., “$\psi F$-contractions: not necessarily nonexpansive Picard operators”, Results Math., 70:3-4 (2016), 415–431 | DOI | MR | Zbl

[27] Shagari M. S., Azam A., “Fixed point theorems of fuzzy set-valued maps with applications”, Probl. Anal. Issues Anal., 9:2 (2020), 68–86 | DOI | MR | Zbl

[28] Shatanawi W., “Fixed point theory for contractive mappings satisfying $\Phi$-maps in $G$-metric spaces”, Fixed Point Theory Appl., 2010 (2010), 1–9 | DOI | MR

[29] Touail Y., “On multivalued $\perp$ $\psi F$-contractions on generalized orthogonal sets with an application to integral inclusions”, Probl. Anal. Issues Anal., 11(29):3 (2022), 109–124 | DOI | MR | Zbl

[30] Wardowski D., “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 2012(94):1 (2012), 1–6 | DOI | MR

[31] Wardowski D., Dung N. V., “Fixed points of $F$-weak contractions on complete metric spaces”, Demonstr. Math., 47:1 (2014), 146–155 | DOI | MR | Zbl

[32] Wardowski D., “Solving existence problems via $F$-contractions”, Proc. Amer. Math. Soc., 146:4 (2018), 1585–1598 | DOI | MR