Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2024_13_1_a3, author = {M. Sh. Shagari and R. O. Ogbumba and S. Yahaya}, title = {A new approach to {Jaggi--Wardowski-type} fixed point theorems}, journal = {Problemy analiza}, pages = {50--70}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a3/} }
M. Sh. Shagari; R. O. Ogbumba; S. Yahaya. A new approach to Jaggi--Wardowski-type fixed point theorems. Problemy analiza, Tome 13 (2024) no. 1, pp. 50-70. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a3/
[1] Agarwal R. P., Aksoy Ü., Karapinar E., Erhan İ. M., “F-contraction mappings on metric-like spaces in connection with integral equations on time scales”, RACSAM, 114(147):3 (2020), 1–12 | DOI | MR
[2] Alghamdi M., Karap?nar E., “$(G-\beta-\psi)$-contractive type mappings in $G$-metric spaces”, Fixed Point Theory Appl., 2013:1 (2013), 1–17 | DOI | MR
[3] Jaid A., Touail Y., El Moutawakil D., “On $\mu F$-contraction: new types of fixed points and common fixed points in Banach spaces”, Asian-Eur. J. Math., 16:11 (2023) | DOI | MR
[4] Aryanpour L., Rahimi H., Soleimani Rad G., “Fixed point results for Hardy-Rogers type contractions with respect to a C-distance in graphical cone metric spaces”, Probl. Anal. Issues Anal., 9:1 (2020), 27–37 | DOI | MR
[5] Banach S., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3:1 (1922), 133–181 | DOI | MR
[6] Chen J., Zhu C., Zhu L., “A note on some fixed point theorems on $G$-metric spaces”, J. Appl. Anal. Comput., 11:1 (2021), 101–112 | DOI | MR
[7] Cho Y. J., “Survey on metric fixed point theory and applications”, Adv. Real Complex Anal. Appl., 2017 (2017), 183–241 | MR | Zbl
[8] Choudhury B. S., Metiya N., Kundu S., “A multivalued fixed point result with associated data dependence and stability study”, Probl. Anal. Issues Anal., 11:1 (2022), 45–57 | DOI | MR | Zbl
[9] Cosentino M., Vetro P., “Fixed point results for $F$-contractive mappings of Hardy-Rogers-type”, Filomat, 28:4 (2014), 715–722 | DOI | MR
[10] Dhage B. C., “Generalized metric space and mapping with fixed point”, Bull. Calcutta Math. Soc., 1992 (1992), 329–336 | MR | Zbl
[11] Fabiano N., Kadelburg Z., Mirkov N., Čavić V. S., Radenović S., “On F-contractions: A survey”, Contemp. Math., 2022, 2022, 327–342 | DOI
[12] Jaggi D. S., “Some unique fixed point theorems”, Indian J. Pure Appl. Math., 8:2 (1977), 223–230 | MR | Zbl
[13] Jiddah J. A., Mohammed S. S., Alansari M., Mohamed S. K., Bakery A., “Fixed point results of Jaggi-type hybrid contraction in generalized metric space”, J. Funct. Spaces, 2022 (2022), 1–9 | DOI | MR
[14] Jleli M., Samet B., “Remarks on $G$-metric spaces and fixed point theorems”, Fixed Point Theory Appl., 2012, 1–7 | DOI | MR
[15] Joshi V., Jain S., “G-metric spaces: From the perspective of F-contractions and best proximity points”, Metric Structures and Fixed Point Theory, 2021, Chapman and Hall/CRC, 2021, 103–148 | DOI | MR
[16] Karap?nar E., Agarwal R. P., “Further fixed point results on $G$-metric space”, Fixed Point Theory Appl., 2013(154):1 (2013), 1–14 | DOI | MR | Zbl
[17] Lotfali Ghasab E., Majani H., Soleimani Rad G., “Fixed points of set-valued $F$-contraction operators in quasi-ordered metric spaces with an application to integral equations”, J. Siberian Fed. Univ. Math. Phys., 14:2 (2021), 150–158 | MR
[18] Mohammed S. S., Alansari M., Azam A., Kanwal S., “Fixed points of ($\varphi$,$F$)-weak contractions on metric-like spaces with applications to integral equations on time scales”, Bol. Soc. Mat. Mex., 27(39) (2021), 1–21 | DOI | MR
[19] Mustafa Z., A new structure for generalized metric spaces - with applications to fixed point theory, PhD Thesis, Univ. of Newcastle, 2005, 10 pp.
[20] Mustafa Z., Sims B., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal., 7:2 (2006), 289–297 | MR | Zbl
[21] Mustafa Z., Obiedat H., Awawdeh F., “Some fixed point theorem for mapping on complete $G$-metric spaces”, Fixed Point Theory Appl., 2008 (2008), 1–12 | DOI | MR
[22] Ogbumba R. O., Shagari M. S., Alansari M., Khalid T. A., Mohamed E. A., Bakery A. A., “Advancements in hybrid fixed point results and F-contractive operators”, Symmetry, 15:6 (2023), 1253–1270 | DOI
[23] Piri H., Kumam P., “Some fixed point theorems concerning $F$-contraction in complete metric spaces”, Fixed Point Theory Appl., 2014(210):1 (2014), 1–11 | DOI | MR
[24] Samet B., Vetro C., Vetro F., “Remarks on $G$-metric spaces”, Int. J. Anal., 2013 (2013), 1–6 | DOI | MR
[25] Secelean N. A., “Iterated function systems consisting of F-contractions”, Fixed Point Theory Appl., 2013:1 (2013), 1–13 | DOI | MR
[26] Secelean N. A., Wardowski D., “$\psi F$-contractions: not necessarily nonexpansive Picard operators”, Results Math., 70:3-4 (2016), 415–431 | DOI | MR | Zbl
[27] Shagari M. S., Azam A., “Fixed point theorems of fuzzy set-valued maps with applications”, Probl. Anal. Issues Anal., 9:2 (2020), 68–86 | DOI | MR | Zbl
[28] Shatanawi W., “Fixed point theory for contractive mappings satisfying $\Phi$-maps in $G$-metric spaces”, Fixed Point Theory Appl., 2010 (2010), 1–9 | DOI | MR
[29] Touail Y., “On multivalued $\perp$ $\psi F$-contractions on generalized orthogonal sets with an application to integral inclusions”, Probl. Anal. Issues Anal., 11(29):3 (2022), 109–124 | DOI | MR | Zbl
[30] Wardowski D., “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 2012(94):1 (2012), 1–6 | DOI | MR
[31] Wardowski D., Dung N. V., “Fixed points of $F$-weak contractions on complete metric spaces”, Demonstr. Math., 47:1 (2014), 146–155 | DOI | MR | Zbl
[32] Wardowski D., “Solving existence problems via $F$-contractions”, Proc. Amer. Math. Soc., 146:4 (2018), 1585–1598 | DOI | MR