Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights
Problemy analiza, Tome 13 (2024) no. 1, pp. 24-36

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider the $q$-integrability of functions $\lambda(t)|\mathcal F_{q, \nu}(f)(t)|^r$, where $\lambda(t)$ is a Gogoladze-Meskhia-Moricz type weight and $\mathcal F_{q, \nu}(f)(t)$ is the $q$-Bessel Fourier transforms of a function $f$ from generalized integral Lipschitz classes. There are some corollaries for power type and constant weights, which are analogues of classical results of Titchmarsh et al. Also, a $q$-analogue of the famous Herz theorem is proved.
Keywords: $q$-Bessel translation, modulus of smoothness, weights of Gogoladze–Meskhia type
Mots-clés : $q$-Bessel Fourier transform, $q$-Besov space.
@article{PA_2024_13_1_a1,
     author = {Yu. I. Krotova},
     title = {Integrability of $q${-Bessel} {Fourier} transforms with {Gogoladze--Meskhia} type weights},
     journal = {Problemy analiza},
     pages = {24--36},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/}
}
TY  - JOUR
AU  - Yu. I. Krotova
TI  - Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights
JO  - Problemy analiza
PY  - 2024
SP  - 24
EP  - 36
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/
LA  - en
ID  - PA_2024_13_1_a1
ER  - 
%0 Journal Article
%A Yu. I. Krotova
%T Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights
%J Problemy analiza
%D 2024
%P 24-36
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/
%G en
%F PA_2024_13_1_a1
Yu. I. Krotova. Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights. Problemy analiza, Tome 13 (2024) no. 1, pp. 24-36. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/