Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights
Problemy analiza, Tome 13 (2024) no. 1, pp. 24-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider the $q$-integrability of functions $\lambda(t)|\mathcal F_{q, \nu}(f)(t)|^r$, where $\lambda(t)$ is a Gogoladze-Meskhia-Moricz type weight and $\mathcal F_{q, \nu}(f)(t)$ is the $q$-Bessel Fourier transforms of a function $f$ from generalized integral Lipschitz classes. There are some corollaries for power type and constant weights, which are analogues of classical results of Titchmarsh et al. Also, a $q$-analogue of the famous Herz theorem is proved.
Keywords: $q$-Bessel translation, modulus of smoothness, weights of Gogoladze–Meskhia type
Mots-clés : $q$-Bessel Fourier transform, $q$-Besov space.
@article{PA_2024_13_1_a1,
     author = {Yu. I. Krotova},
     title = {Integrability of $q${-Bessel} {Fourier} transforms with {Gogoladze--Meskhia} type weights},
     journal = {Problemy analiza},
     pages = {24--36},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/}
}
TY  - JOUR
AU  - Yu. I. Krotova
TI  - Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights
JO  - Problemy analiza
PY  - 2024
SP  - 24
EP  - 36
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/
LA  - en
ID  - PA_2024_13_1_a1
ER  - 
%0 Journal Article
%A Yu. I. Krotova
%T Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights
%J Problemy analiza
%D 2024
%P 24-36
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/
%G en
%F PA_2024_13_1_a1
Yu. I. Krotova. Integrability of $q$-Bessel Fourier transforms with Gogoladze--Meskhia type weights. Problemy analiza, Tome 13 (2024) no. 1, pp. 24-36. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a1/

[1] Achak A., Daher R., Dhaouadi L., Loualid E.M., “An analog of Titchmarsh's theorem for the $q$-Bessel transform”, Ann. Univ. Ferrara, 65:1 (2019), 1–13 | DOI | MR | Zbl

[2] Bergh J., Löfström J., Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg, 1976 | MR | Zbl

[3] Butzer P. L., Nessel R. J., Fourier analysis and approximation, Birkhauser, Basel-Stuttgart, 1971 | Zbl

[4] Butzer P. L., Dyckhoff H., Gorlich E., Stens R. L., “Best trigonometric approximation, fractional order derivatives and Lipschitz classes”, Can. J. Math., 29:4 (1977), 781–793 | DOI | MR | Zbl

[5] Daher R., Tyr O., “Growth properties of the q-Dunkl transform in the space $L^p_{q,~\alpha} (\mathbb R_q, |x|^{2\alpha+1}~d_q(x))$”, Ramanujan J. (to appear) | DOI | MR

[6] Dhaouadi L., Fitouhi A., El Kamel J., “Inequalities in $q$-Fourier analysis”, J. Ineq. Pure Appl. Math., 7:5 (2006), 171 | MR | Zbl

[7] Dhaouadi L., “On the $q$-Bessel Fourier transform”, Bull. Math. Anal. Appl., 5:2 (2013), 42–60 | MR | Zbl

[8] Fitouhi A., Dhaouadi L., “Positivity of the generalized translation associated with the $q$-Hankel transform”, Const. Approx., 34:3 (2011), 435–472 | DOI | MR

[9] Gogoladze L., Meskhia R., “On the absolute convergence of trigonometric Fourier series”, Proc. Razmadze Math. Inst., 141 (2006), 29–46 | MR

[10] Herz C., “Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms”, J. Math. Mech., 18:2 (1968), 283–324 | MR

[11] Kac V., Cheung P., Quantum calculus, Springer, New York, 2002 | MR | Zbl

[12] Koornwinder T.H., Swarttouw F.H., “On $q$-analogues of the Hankel and Fourier transform”, Trans. Amer. Math. Soc., 333:1 (1992), 445–461 | MR | Zbl

[13] Móricz F., “Sufficient conditions for the Lebesgue integrability of Fourier transforms”, Anal. Math., 36:2 (2010), 121–129 | DOI | MR | Zbl

[14] Platonov S. S., “On the Hankel transform of functions from Nikol'skii classes”, Integral Transforms Spec. Funct., 32:10 (2021), 823–838 | DOI | MR | Zbl

[15] Szasz O., “Fourier series and mean moduli of continuity”, Trans. Amer. Math. Soc., 42:3 (1937), 366–395 | DOI | MR | Zbl

[16] Titchmarsh E., Introduction to the theory of Fourier integrals, Clarendon press, Oxford, 1937 | MR | Zbl

[17] Volosivets S., “Weighted integrability of Fourier-Dunkl transforms and generalized Lipschitz classes”, Analysis Math. Phys., 12 (2022), 115 | DOI | MR | Zbl

[18] Volosivets S. S., “Weighted integrability results for first Hankel-Clifford transform”, Probl. Anal. Issues Anal., 12(30):2 (2023), 107–117 | DOI | MR

[19] Younis M. S., “Fourier transforms of Dini-Lipschitz functions”, Int. J. Math. Math. Sci., 9:2 (1986), 301–312 | DOI | MR | Zbl