Smirnov and Bernstein-type inequalities, taking into account higher-order coefficients and free terms of polynomials
Problemy analiza, Tome 13 (2024) no. 1, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The starting point in the theory of differential inequalities for polynomials is the book "Investigation of aqueous solutions by specific gravity" by D. I. Mendeleev. In this work, he dealt not only with chemical, but also mathematical problems. The question raised in this book led to appearance of a large number of works on various types of differential inequalities for polynomials. In our paper, we obtain Smirnov and Bernstein-type inequalities that use higher-order coefficients and free terms of polynomials.
Keywords: differential inequality, higher-order coefficient, free term.
Mots-clés : polynomial
@article{PA_2024_13_1_a0,
     author = {E. G. Kompaneets and L. G. Zybina},
     title = {Smirnov and {Bernstein-type} inequalities, taking into account higher-order coefficients and free terms of polynomials},
     journal = {Problemy analiza},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2024_13_1_a0/}
}
TY  - JOUR
AU  - E. G. Kompaneets
AU  - L. G. Zybina
TI  - Smirnov and Bernstein-type inequalities, taking into account higher-order coefficients and free terms of polynomials
JO  - Problemy analiza
PY  - 2024
SP  - 3
EP  - 23
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2024_13_1_a0/
LA  - en
ID  - PA_2024_13_1_a0
ER  - 
%0 Journal Article
%A E. G. Kompaneets
%A L. G. Zybina
%T Smirnov and Bernstein-type inequalities, taking into account higher-order coefficients and free terms of polynomials
%J Problemy analiza
%D 2024
%P 3-23
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2024_13_1_a0/
%G en
%F PA_2024_13_1_a0
E. G. Kompaneets; L. G. Zybina. Smirnov and Bernstein-type inequalities, taking into account higher-order coefficients and free terms of polynomials. Problemy analiza, Tome 13 (2024) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/PA_2024_13_1_a0/

[1] Sur l'ordre de la meilleure approximation des functions continues par des polynomes de degré donné, v. IV, Mémoires de la Classe des sciences, Deuxiéme série, Académie royale de Belgique, 1912 (in French)

[2] Bernstein S., Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle, Paris, 1926 (in French)

[3] Bernstein S., “Sur la limitation des dérivées des polynomes”, C. R. Math. Acad. Sci. Paris, 190 (1930), 338–341 (in French)

[4] Bernstein S. N., Collected works, v. 1, Constructive functions theory (1905–1930), Izd. AN SSSR, M., 1952 (in Russian) | MR | Zbl

[5] J. Math. Sci. (N.Y.), 143 (2007), 3069–3076 | DOI | MR | Zbl

[6] Fejér L., “Über Konjugierte trigonometrische Reichen”, Journal für die reine und angewandte Mathematik, 144 (1914), 48–56 (in German) | DOI | MR

[7] Fekete M., “Über einen Satz des Herrn Serge Bernstein”, Journal für die reine und angewandte Mathematik, 146 (1916), 88–94 (in German) | DOI | MR

[8] Kompaneets E. G., Starkov V. V., “Smirnov's inequality for polynomials having zeros outside the unit disc”, Probl. Anal. Issues Anal., 10(28):3 (2021), 71–90 | DOI | MR | Zbl

[9] Kompaneets E. G., Starkov V. V., “On the Smirnov type inequality for polynomials”, Math. Notes, 111:3 (2022), 388–397 | DOI | MR | Zbl

[10] Markov A. A., “On a problem posed by D. I. Mendeleev”, Izv. Akad. Nauk. St. Petersburg, 62 (1889), 1–24 (in Russian)

[11] Markov A. A., Selected works on theory of continued fractions and theory of functions deviating least from zero, OGIZ, M.–L., 1948 (in Russian) | MR

[12] Markoff W. A., “Über Polynome die in einen gegebenen Intervalle möglichst wenig von Null adweichen”, Math. Ann., 77 (1916), 213–258 (in Russian) | DOI | MR

[13] Mendeleev D. I., Investigation of aqueous solutions by specific gravity, Tip. V. Demakova, St. Petersburg, 1887 (in Russian)

[14] Mir M. Y., Wali S. L., Shah W. M., “Generalizations of certain well-known inequalities for rational functions”, Probl. Anal. Issues Anal., 12(30):1 (2023), 25–33 | DOI | MR | Zbl

[15] Sib. Math. J., 51:4 (2010), 706–711 | DOI | MR | Zbl

[16] Qasim I., “Refinement of some Bernstein type inequalities for rational functions”, Probl. Anal. Issues Anal., 11(29):1 (2022), 122–132 | DOI | MR | Zbl

[17] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, Oxford University Press, New York, 2002 | MR | Zbl

[18] Riesz M., “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Jahresber. Dtsch. Math.-Ver., 23 (1914), 354–368

[19] Smirnoff V. I., “Sur quelques polynomes aux propriétés extrémales”, Transactions of the Kharkov mathematical society, 4:2 (1928), 67–72 (in French)

[20] M.I.T. Press, Massachusetts Institute of Technology, Cambridge, MA, 1968 | MR | Zbl