Rational type cyclic contraction in $G$-metric Spaces
Problemy analiza, Tome 12 (2023) no. 3, pp. 119-131

Voir la notice de l'article provenant de la source Math-Net.Ru

Rational type cyclic contraction via $\mathcal{C}$-class function is established in $G$-metric spaces, which can not be reduced to the contractive condition in standard metric spaces. A common fixed-point result is obtained for the pair of $(A, B)$-weakly increasing mappings in $G$-metric spaces.
Keywords: G-metric spaces, Cyclic maps, $\mathcal{C}$-class function, Common fixed point.
@article{PA_2023_12_3_a7,
     author = {S. V. Puvar and R. G. Vyas},
     title = {Rational type cyclic contraction in $G$-metric {Spaces}},
     journal = {Problemy analiza},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a7/}
}
TY  - JOUR
AU  - S. V. Puvar
AU  - R. G. Vyas
TI  - Rational type cyclic contraction in $G$-metric Spaces
JO  - Problemy analiza
PY  - 2023
SP  - 119
EP  - 131
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_3_a7/
LA  - en
ID  - PA_2023_12_3_a7
ER  - 
%0 Journal Article
%A S. V. Puvar
%A R. G. Vyas
%T Rational type cyclic contraction in $G$-metric Spaces
%J Problemy analiza
%D 2023
%P 119-131
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_3_a7/
%G en
%F PA_2023_12_3_a7
S. V. Puvar; R. G. Vyas. Rational type cyclic contraction in $G$-metric Spaces. Problemy analiza, Tome 12 (2023) no. 3, pp. 119-131. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a7/