Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2023_12_3_a4, author = {S. Yu. Graf and I. A. Nikitin}, title = {Planar harmonic mappings with a given {Jacobian}}, journal = {Problemy analiza}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a4/} }
S. Yu. Graf; I. A. Nikitin. Planar harmonic mappings with a given Jacobian. Problemy analiza, Tome 12 (2023) no. 3. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a4/
[1] M. Chuaqui, P. Duren, B. Osgood, “The Schwarzian derivative for harmonic mappings”, J. Anal. Math., 91 (2003), 329–351 | DOI | MR | Zbl
[2] P. Duren, Harmonic mappings in the plane, Cambridge, 2004, 214 pp. | MR | Zbl
[3] P. Duren, Univalent functions, Springer-Verlag, N.Y., 1983, 395 pp. | MR | Zbl
[4] S. Yu. Graf, “The Schwarzian derivatives of harmonic function and univalence condition”, Probl. Anal. Issues Anal, 6:2 (2017), 42–56 | DOI | MR | Zbl
[5] S. Yu. Graf, “Harmonic mappings onto R-convex domains”, Probl. Anal. Issues Anal., 8:2 (2019), 37–50 | DOI | MR | Zbl
[6] Translations of Mathematical Monographs, 26, American Mathematical Society, Providence, R.I., 1969 | DOI | MR | MR | Zbl
[7] W. Hengartner, G. Schober, “Harmonic Mappings with Given Dilatation”, Journal London Mathematical Society, 33 (1986), 473–483 | DOI | MR | Zbl
[8] R. Hernandez, M. J. Martin, “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl
[9] Hille E., Ordinary Differential Equations in the Complex Domain, Courier Corporation, 1997, 485 pp. | MR
[10] O. H. Keller, “Ganze Cremona-Transformationen von Primzahlgrad in der Ebene”, Monatshefte für Mathematik und Physik, 47:1 (1939), 299–306 | DOI | MR | Zbl
[11] Z. Nehari, “The Schwarzian derivatives and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl
[12] V. Starkov, “The Jacobian conjecture: structure of Keller mappings”, Probl. Anal. Issues Anal., 8:3 (2019), 152–165 | DOI | MR | Zbl