Planar harmonic mappings with a given Jacobian
Problemy analiza, Tome 12 (2023) no. 3.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of the Jacobians of sense-preserving harmonic mappings in the unit disk of the complex plane. The main result is a criterion for an infinitely differentiable positive function to be a Jacobian of some sense-preserving harmonic mapping. The relationship between a Jacobian of a harmonic mapping and the Schwarzian derivative of its dilatation is revealed. The structure of the set of harmonic mappings with a given Jacobian is described. The results are illustrated by examples. In conclusion, we consider an application of the main results of the article to the construction of variational formulas in classes of harmonic mappings with a given Jacobian.
Keywords: planar harmonic mappings, dilatation, Schwarzian derivative.
Mots-clés : Jacobian
@article{PA_2023_12_3_a4,
     author = {S. Yu. Graf and I. A. Nikitin},
     title = {Planar harmonic mappings with a given {Jacobian}},
     journal = {Problemy analiza},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a4/}
}
TY  - JOUR
AU  - S. Yu. Graf
AU  - I. A. Nikitin
TI  - Planar harmonic mappings with a given Jacobian
JO  - Problemy analiza
PY  - 2023
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_3_a4/
LA  - en
ID  - PA_2023_12_3_a4
ER  - 
%0 Journal Article
%A S. Yu. Graf
%A I. A. Nikitin
%T Planar harmonic mappings with a given Jacobian
%J Problemy analiza
%D 2023
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_3_a4/
%G en
%F PA_2023_12_3_a4
S. Yu. Graf; I. A. Nikitin. Planar harmonic mappings with a given Jacobian. Problemy analiza, Tome 12 (2023) no. 3. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a4/

[1] M. Chuaqui, P. Duren, B. Osgood, “The Schwarzian derivative for harmonic mappings”, J. Anal. Math., 91 (2003), 329–351 | DOI | MR | Zbl

[2] P. Duren, Harmonic mappings in the plane, Cambridge, 2004, 214 pp. | MR | Zbl

[3] P. Duren, Univalent functions, Springer-Verlag, N.Y., 1983, 395 pp. | MR | Zbl

[4] S. Yu. Graf, “The Schwarzian derivatives of harmonic function and univalence condition”, Probl. Anal. Issues Anal, 6:2 (2017), 42–56 | DOI | MR | Zbl

[5] S. Yu. Graf, “Harmonic mappings onto R-convex domains”, Probl. Anal. Issues Anal., 8:2 (2019), 37–50 | DOI | MR | Zbl

[6] Translations of Mathematical Monographs, 26, American Mathematical Society, Providence, R.I., 1969 | DOI | MR | MR | Zbl

[7] W. Hengartner, G. Schober, “Harmonic Mappings with Given Dilatation”, Journal London Mathematical Society, 33 (1986), 473–483 | DOI | MR | Zbl

[8] R. Hernandez, M. J. Martin, “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl

[9] Hille E., Ordinary Differential Equations in the Complex Domain, Courier Corporation, 1997, 485 pp. | MR

[10] O. H. Keller, “Ganze Cremona-Transformationen von Primzahlgrad in der Ebene”, Monatshefte für Mathematik und Physik, 47:1 (1939), 299–306 | DOI | MR | Zbl

[11] Z. Nehari, “The Schwarzian derivatives and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[12] V. Starkov, “The Jacobian conjecture: structure of Keller mappings”, Probl. Anal. Issues Anal., 8:3 (2019), 152–165 | DOI | MR | Zbl