Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2023_12_3_a3, author = {S. Ghosh and P. Saha and S. Roy and B. S. Choudhury}, title = {Strong coupled fixed points and applications to fractal generations in fuzzy metric spaces}, journal = {Problemy analiza}, pages = {50--68}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a3/} }
TY - JOUR AU - S. Ghosh AU - P. Saha AU - S. Roy AU - B. S. Choudhury TI - Strong coupled fixed points and applications to fractal generations in fuzzy metric spaces JO - Problemy analiza PY - 2023 SP - 50 EP - 68 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2023_12_3_a3/ LA - en ID - PA_2023_12_3_a3 ER -
%0 Journal Article %A S. Ghosh %A P. Saha %A S. Roy %A B. S. Choudhury %T Strong coupled fixed points and applications to fractal generations in fuzzy metric spaces %J Problemy analiza %D 2023 %P 50-68 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2023_12_3_a3/ %G en %F PA_2023_12_3_a3
S. Ghosh; P. Saha; S. Roy; B. S. Choudhury. Strong coupled fixed points and applications to fractal generations in fuzzy metric spaces. Problemy analiza, Tome 12 (2023) no. 3, pp. 50-68. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a3/
[1] Barnsley M. F., Fractals Everywhere, Second Edition, Academic Press, Boston, 1993 | MR | Zbl
[2] Bhaskar T. G., Lakshmikantham V., “Fixed point theorems in partially ordered metric spaces”, Nonlinear. Anal., 65:7 (2006), 1379–1393 | DOI | MR | Zbl
[3] Chen Y. Z., “Existence theorems of coupled fixed points”, J. Math. Anal. Appl., 154 (1991), 142–150 | DOI | MR | Zbl
[4] Choudhury B. S., Chakraborty P., “Strong fixed points of $\phi$-couplings and generation of fractals”, Chaos Solitons Fractals, 163 (2022) | DOI | MR | Zbl
[5] Choudhury B. S., Metiya N., Postolache M., “A generalized weak contraction principle with applications to coupled coincidence point problems”, Fixed Point Theory Appl., 152 (2013) | DOI | MR
[6] Deng Z., “Fuzzy pseudo-metric spaces”, J. Math. Anal. Appl., 86:1 (1982), 74–95 | DOI | MR | Zbl
[7] Fadail Z. M., Ahmad A. G. B., Rad G. S., Ozturk V., Radenović S., “Some remarks on coupled, tripled and $n$-tupled coincidence and fixed points theorems in ordered abstract metric spaces”, Far East J. Math. Sci., 97:7 (2015), 809–839 | DOI | MR | Zbl
[8] George A., Veeramani P., “On some result in fuzzy metric spaces”, Fuzzy Sets and Systems, 64 (1994), 395–399 | DOI | MR | Zbl
[9] George A., Veeramani P., “On some result of analysis for fuzzy metric spaces”, Fuzzy Sets and Systems, 90 (1997), 365–368 | DOI | MR | Zbl
[10] Ghasab E. L., Majani H., Rad G. S., “$\beta$-type and generalized $\beta$-$\gamma$-type multi-valued contractive mappings in a Menger PbM-space”, J. Math. Ext., 16:9 (2022), 1, 1–20 | DOI | Zbl
[11] Grabiec M., “Fixed points in fuzzy metric space”, Fuzzy Sets and Systems, 27 (1997), 385–389 | DOI | MR
[12] Gregori V., Misana JJ., “A Banach contraction principle in fuzzy metric spaces defined by means of t-conorms”, RACSAM, 115 (2021) | DOI | MR | Zbl
[13] Greogori V., Sapena A., “On fixed point theorems in fuzzy metric spaces”, Fuzzy Sets and Systems, 125:2 (2002), 245–252 | DOI | MR
[14] Hu XQ., “Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces”, Fixed Point Theory Appl., 2011 | DOI | MR
[15] Hutchinson J., “Fractals and self-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl
[16] Kaleva O., Seikkala S., “On fuzzy metric spaces”, Fuzzy Sets and Systems, 12:3 (1994), 215–229 | DOI | MR
[17] Karapinar E., Moreno JM., Shahzad N., Lupez de Hierro AF., “Extended Proinov $\mathfrak{X}$-contractions in metric spaces and fuzzy metric spaces satisfying the property NC by avoiding the monotone condition”, RACSAM, 116 (2022), 140 | DOI | MR | Zbl
[18] Karapinar E., “Fixed point theory for cyclic weak $\phi$-contraction”, Appl Math Lett., 24:6 (2011), 822–825 | DOI | MR | Zbl
[19] Kirk W. A., Srinivasan P. S., Veeramani P., “Fixed points for mappings satisfying cyclical contractive conditions”, Fixed Point Theory, 4 (2003), 79–89 | MR | Zbl
[20] Kramosil O., Michalek J., “Fuzzy metric and statistical metric spaces”, Kybernetika, 11 (1975), 326–334 | MR
[21] Pasupathi R., Chand A. K. B., Navascuis M. A., “Cyclic iterated function systems”, J. Fixed Point Theory Appl., 22:3 (2020) | DOI | MR | Zbl
[22] Petruşel A., Sous A., “Coupled fractals in complete metric spaces”, Nonlinear Anal. Model. Control, 23:2 (2018), 141–158 | DOI | MR | Zbl
[23] Qiu Z., Hong S., “Coupled fixed points for multivalued mappings in fuzzy metric spaces”, Fixed Point Theory Appl., 162 (2013) | DOI | MR
[24] Rodrnguez-Lupez J., Romaguera S., “The Hausdorff fuzzy metric on compact sets”, Fuzzy Sets and Systems, 147 (2004), 273–283 | DOI | MR | Zbl
[25] Roldbn A., Martinez-Moreno J, Roldbn C., Karapinar E., “Some remarks on multidimensional fixed point theorems”, Fixed Point Theory, 15:2 (2014), 545–558 | MR | Zbl
[26] Schweizer B., Sklar A., “Statistical metric spaces”, Pac. J. Appl. Math., 10 (1960), 313–334 | DOI | MR | Zbl
[27] Soleimani Rad G., Shukla S., Rahimi H., “Some relations between n-tuple fixed point and fixed point results”, RACSAM, 109 (2015), 471–481 | DOI | MR | Zbl
[28] Xiao JZ., Zhu XH., Jin PP., “Iterated function systems and attractors in the KM-fuzzy metric spaces”, Fuzzy Sets and Systems, 267 (2015), 100–116 | DOI | MR | Zbl