Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2023_12_3_a0, author = {N. N. Aitkuzhina and A. M. Gaisin and R. A. Gaisin}, title = {Regular growth of {Dirichlet} series of the class $D(\Phi)$ on curves of bounded $K$-slope}, journal = {Problemy analiza}, pages = {3--19}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a0/} }
TY - JOUR AU - N. N. Aitkuzhina AU - A. M. Gaisin AU - R. A. Gaisin TI - Regular growth of Dirichlet series of the class $D(\Phi)$ on curves of bounded $K$-slope JO - Problemy analiza PY - 2023 SP - 3 EP - 19 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2023_12_3_a0/ LA - en ID - PA_2023_12_3_a0 ER -
N. N. Aitkuzhina; A. M. Gaisin; R. A. Gaisin. Regular growth of Dirichlet series of the class $D(\Phi)$ on curves of bounded $K$-slope. Problemy analiza, Tome 12 (2023) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a0/
[1] Gaisin A. M., Aitkuzhina N. N., “Stability criterion for maximal terms of Dirichlet Series”, Journal of Mathematical Sciences, 260:6 (2022), 715–724 | DOI | MR | Zbl
[2] Math. Notes, 50:4 (1991), 1018–1024 | DOI | MR | Zbl | Zbl
[3] Sbornik: Mathematics, 194:8 (2003), 1167–1194 | DOI | DOI | MR | Zbl
[4] Russian Acad. Sci. Izv. Math., 44:2 (1995), 281–299 | DOI | MR | Zbl
[5] Sbornik: Mathematics, 197:6 (2006), 813–833 | DOI | MR | Zbl
[6] St. Petersburg Math. J., 27:1 (2016), 33–50 | DOI | MR | Zbl
[7] Math. Notes, 78:1 (2005), 33–46 | DOI | MR | Zbl
[8] Gaisin A.M., Yusupova N.N., “Behavior of the sum of a Dirichlet series with a given growth majorant on curves”, Ufa Math. J., 1:2 (2009), 17–28 (in Russian) | MR | Zbl
[9] Sbornik: Mathematics, 212:5 (2021), 655–675 | DOI | MR | Zbl
[10] Leont'ev A. F., Exponential Series, Nauka, M., 1976 (in Russian) | MR | Zbl
[11] Leont'ev A. F., Sequences of Polynomials in exponents, Nauka, M., 1980 (in Russian)
[12] Pólya G., “Untersuchungen über Lücken und Singularitäten von Potenzeihen”, Math. Z., 29 (1929), 549–640 | DOI | MR