Regular growth of Dirichlet series of the class $D(\Phi)$ on curves of bounded $K$-slope
Problemy analiza, Tome 12 (2023) no. 3, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the sum of entire Dirichlet series with positive exponents on curves of a bounded slope going in a certain way to infinity. For entire transcendental functions of finite order, Polia showed that if the density of the sequence of exponents is equal to zero, then for any curve going to infinity there is an unbounded sequence of points on which the logarithm of the modulus of the sum of the series is equivalent to the logarithm of the maximum of the modulus. Later, these results were completely transferred by I. D. Latypov to entire Dirichlet series of finite order and finite lower order by Ritt. Further generalization was obtained in the works of N. N. Yusupova–Aitkuzhina to the more general dual classes of Dirichlet series defined by the convex majorant. In this paper, we obtain necessary and sufficient conditions for the exponents under which the logarithm of the modulus of the sum of any Dirichlet series from one such class on a curve of bounded slope is equivalent to the logarithm of the maximum term on an asymptotic set whose upper density is not less than a positive number depending only on the curve.
Keywords: Dirichlet series, the curve of a bounded slope, asymptotic set.
Mots-clés : maximal term
@article{PA_2023_12_3_a0,
     author = {N. N. Aitkuzhina and A. M. Gaisin and R. A. Gaisin},
     title = {Regular growth of {Dirichlet} series of the class $D(\Phi)$ on curves of bounded $K$-slope},
     journal = {Problemy analiza},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_3_a0/}
}
TY  - JOUR
AU  - N. N. Aitkuzhina
AU  - A. M. Gaisin
AU  - R. A. Gaisin
TI  - Regular growth of Dirichlet series of the class $D(\Phi)$ on curves of bounded $K$-slope
JO  - Problemy analiza
PY  - 2023
SP  - 3
EP  - 19
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_3_a0/
LA  - en
ID  - PA_2023_12_3_a0
ER  - 
%0 Journal Article
%A N. N. Aitkuzhina
%A A. M. Gaisin
%A R. A. Gaisin
%T Regular growth of Dirichlet series of the class $D(\Phi)$ on curves of bounded $K$-slope
%J Problemy analiza
%D 2023
%P 3-19
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_3_a0/
%G en
%F PA_2023_12_3_a0
N. N. Aitkuzhina; A. M. Gaisin; R. A. Gaisin. Regular growth of Dirichlet series of the class $D(\Phi)$ on curves of bounded $K$-slope. Problemy analiza, Tome 12 (2023) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/PA_2023_12_3_a0/

[1] Gaisin A. M., Aitkuzhina N. N., “Stability criterion for maximal terms of Dirichlet Series”, Journal of Mathematical Sciences, 260:6 (2022), 715–724 | DOI | MR | Zbl

[2] Math. Notes, 50:4 (1991), 1018–1024 | DOI | MR | Zbl | Zbl

[3] Sbornik: Mathematics, 194:8 (2003), 1167–1194 | DOI | DOI | MR | Zbl

[4] Russian Acad. Sci. Izv. Math., 44:2 (1995), 281–299 | DOI | MR | Zbl

[5] Sbornik: Mathematics, 197:6 (2006), 813–833 | DOI | MR | Zbl

[6] St. Petersburg Math. J., 27:1 (2016), 33–50 | DOI | MR | Zbl

[7] Math. Notes, 78:1 (2005), 33–46 | DOI | MR | Zbl

[8] Gaisin A.M., Yusupova N.N., “Behavior of the sum of a Dirichlet series with a given growth majorant on curves”, Ufa Math. J., 1:2 (2009), 17–28 (in Russian) | MR | Zbl

[9] Sbornik: Mathematics, 212:5 (2021), 655–675 | DOI | MR | Zbl

[10] Leont'ev A. F., Exponential Series, Nauka, M., 1976 (in Russian) | MR | Zbl

[11] Leont'ev A. F., Sequences of Polynomials in exponents, Nauka, M., 1980 (in Russian)

[12] Pólya G., “Untersuchungen über Lücken und Singularitäten von Potenzeihen”, Math. Z., 29 (1929), 549–640 | DOI | MR

[13] Math. Notes, 33:2 (1983), 119–124 | DOI | MR | Zbl