Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2023_12_2_a7, author = {S. S. Volosivets}, title = {Weighted integrability results for first {Hankel-Clifford} transform}, journal = {Problemy analiza}, pages = {107--117}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a7/} }
S. S. Volosivets. Weighted integrability results for first Hankel-Clifford transform. Problemy analiza, Tome 12 (2023) no. 2, pp. 107-117. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a7/
[1] Abilov V. A., Abilova F. V., “Approximation of functions by Fourier-Bessel sums”, Russian Math. (Izv. VUZ. Matem.), 45:8 (2001), 1–7 | MR | Zbl
[2] Bergh J., Löfström J., Interpolation spaces. An introduction, Springer-Verlag, Berlin-Heidelberg, 1976 | MR | Zbl
[3] Butzer P. L., Nessel R. J., Fourier analysis and approximation, Birkhauser, Basel-Stuttgart, 1971 | Zbl
[4] Daher R., Tyr O., “Integrability of the Fourier-Jacobi transform of functions satisfying Lipschitz and Dini-Lipschitz-type estimates”, Integral Transforms Spec. Funct., 2022 (to appear) | DOI | MR
[5] El Hamma M., Mahfoud A., “Generalization of Titchmarsh's theorem for the first Hankel-Clifford transform in the space $L^p_\mu((0,+\infty))$”, Probl. Anal. Issues Anal., 11(29):3 (2022), 56–65 | DOI | MR
[6] Gogoladze L., Meskhia R., “On the absolute convergence of trigonometric Fourier series”, Proc. Razmadze Math. Inst., 141 (2006), 29–46 | MR
[7] Gray A., Matthecos G. B., MacRobert T. M., A treatise on Bessel functions and their applications to physics, Macmillan, London, 1952 | MR
[8] Krayukhin S. A., Volosivets S. S., “Functions of bounded $p$-variation and weighted integrability of Fourier transforms”, Acta Math. Hung., 159:2 (2019), 374–399 | DOI | MR | Zbl
[9] Lahmadi H., El Hamma M., “On estimates for the Hankel-Clifford transform in the space $L^p_\mu$”, J. Anal., 31 (2023), 1479–1486 | DOI | MR
[10] Mahfoud A., El Hamma M., “Dini Clifford Lipschitz functions for the first Hankel-Clifford transform in the space $L^2_\mu$”, J. Anal., 30:3 (2022), 909–918 | DOI | MR
[11] Mendez J. M., La transformacion integral de Hankel-Clifford, Secretariado de Publicaciones de la Universidad de La Laguna, La Laguna, 1979
[12] Méndez Pérez J. M. R., Socas Robayna M. M., “A pair of generalized Hankel-Clifford transformation and their applications”, J. Math. Anal. Appl., 154:2 (1991), 543–557 | DOI | MR | Zbl
[13] Móricz F., “Sufficient conditions for the Lebesgue integrability of Fourier transforms”, Anal. Math., 36:2 (2010), 121–129 | DOI | MR | Zbl
[14] Platonov S. S., “Generalized Bessel translations and some problems of aprroximation of functions theory in metric $L_2$. II”, Proc. Petrozavodsk State Univ. Matematika, 8 (2001), 20–36 (in Russian) | MR | Zbl
[15] Platonov S. S., “Bessel harmonic analysis and approximation of functions on the half-line”, Izv Math., 71:5 (2007), 1001–1048 | DOI | MR | Zbl
[16] Platonov S. S., “On the Hankel transform of functions from Nikol'skii classes”, Integral Transforms Spec. Funct., 32:10 (2021), 823–838 | DOI | MR | Zbl
[17] Prasad A., Singh V. K., Dixit M. M., “Pseudo-differential operators involving Hankel-Clifford transformations”, Asian-European. J. Math., 5:3 (2012), 1250040, 15 pp. | DOI | MR | Zbl
[18] Prasad A., Singh V. K., “Pseudo-differential operators associated to a pair of Hankel-Clifford transformations on certain Beurling type function spaces”, Asian-European J. Math., 6:3 (2013), 1350039, 22 pp. | DOI | MR | Zbl
[19] Titchmarsh E., Introduction to the theory of Fourier integrals, Clarendon press, Oxford, 1937 | MR | Zbl
[20] Volosivets S., “Weighted integrability of Fourier-Dunkl transforms and generalized Lipschitz classes”, Analysis Math. Phys., 12 (2022), 115 | DOI | MR | Zbl
[21] Volosivets S. S., “Fourier-Bessel transforms and generalized uniform Lipschitz classes”, Integral Transforms Spec. Funct., 33:7 (2022), 559–569 | DOI | MR | Zbl
[22] Volosivets S. S., “Weighted integrability of Fourier-Jacobi transforms”, Integral Transforms Spec. Funct. (to appear) | DOI | MR
[23] Younis M.S., “Fourier transforms of Dini-Lipschitz functions”, Int. J. Math. Math. Sci., 9:2 (1986), 301–312 | DOI | MR | Zbl