On normalized Rabotnov function associated with certain subclasses of analytic functions
Problemy analiza, Tome 12 (2023) no. 2, pp. 97-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate some sufficient conditions for the normalized Rabotnov function to be in certain subclasses of analytic and univalent functions. The usefulness of the results is depicted by some corollaries and examples.
Keywords: Rabotnov function, starlike, coefficient bounds and coefficient estimates.
Mots-clés : univalent, convex
@article{PA_2023_12_2_a6,
     author = {S. S\"umer Eker and B. \c{S}eker and S. Ece},
     title = {On normalized {Rabotnov} function associated with certain subclasses of analytic functions},
     journal = {Problemy analiza},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a6/}
}
TY  - JOUR
AU  - S. Sümer Eker
AU  - B. Şeker
AU  - S. Ece
TI  - On normalized Rabotnov function associated with certain subclasses of analytic functions
JO  - Problemy analiza
PY  - 2023
SP  - 97
EP  - 106
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a6/
LA  - en
ID  - PA_2023_12_2_a6
ER  - 
%0 Journal Article
%A S. Sümer Eker
%A B. Şeker
%A S. Ece
%T On normalized Rabotnov function associated with certain subclasses of analytic functions
%J Problemy analiza
%D 2023
%P 97-106
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a6/
%G en
%F PA_2023_12_2_a6
S. Sümer Eker; B. Şeker; S. Ece. On normalized Rabotnov function associated with certain subclasses of analytic functions. Problemy analiza, Tome 12 (2023) no. 2, pp. 97-106. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a6/

[1] Bansal D., Prajapat J. K., “Certain geometric properties of the Mittag-Leffler functions”, Complex Var. Elliptic Equ., 61:3 (2016), 338–350 | DOI | MR | Zbl

[2] Baricz A., “Geometric properties of generalized Bessel functions”, Publ. Math. Debrecen, 73 (2008), 155–178 | DOI | MR | Zbl

[3] Duren P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, NY, USA, 1983 | MR | Zbl

[4] Ece S., Sümer Eker S., “Characterizations for certain subclasses of starlike and convex functions associated with generalized Dini functions”, Afr. Mat., 33 (2022), 10 pp. | DOI | MR

[5] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin–Heidelberg, 2014 | MR | Zbl

[6] Prajapat J. K., “Certain geometric properties of the Wright functions”, Integral Transforms Spec. Funct., 26:3 (2015), 203–212 | DOI | MR | Zbl

[7] Rabotnov Y., “Equilibrium of an Elastic Medium with After-Effect”, Prikladnaya Matematika i Mekhanika, 12:1 (1948), 53–62 (in Russian) ; Reprinted: Fract. Calc. and Appl. Anal., 17 (2014), 684–696 | DOI | MR | Zbl | MR | Zbl

[8] Şeker B., Sümer Eker S., “On Certain Subclasses of Starlike and Convex Functions Associated with Pascal Distribution Series”, Turk. J. Math., 44 (2020), 1982–1989 | DOI | MR | Zbl

[9] Sümer Eker S., Ece S., “Geometric Properties Of Normalized Rabotnov Function”, Hacet. J. Math. Stat., 51:5 (2022), 1248–1259 | DOI | MR | Zbl

[10] Sümer Eker S., Ece S., “Geometric Properties of the Miller-Ross Functions”, Iran J. Sci. Technol. Trans. Sci., 46:2 (2022), 631–636 | DOI | MR

[11] Thulasiram T., Suchithra K., Sudharsan T., Murugusundaramoorthy G., “Some inclusion results associated with certain subclass of analytic functions inolving Hohlov operator”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 108:2 (2014), 711–720 | DOI | MR | Zbl