Integral inequalities of Simpson type via weighted integrals
Problemy analiza, Tome 12 (2023) no. 2, pp. 68-86

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we use weighted integrals to obtain new integral inequalities of the Simpson type for the class of $(h, m, s)$-convex functions of the second type. In the work we show that the obtained results include some known from the literature, as particular cases.
Keywords: convex fuction, inequality of Simpson, weighted integral operator, $(h, s)$-convex function, Hadamard-type inequality, Hölder inequality, power mean inequality.
Mots-clés : m
@article{PA_2023_12_2_a4,
     author = {J. E. N\'apoles and M. N. Quevedo Cubillos and B. Bayraktar},
     title = {Integral inequalities of {Simpson} type via weighted integrals},
     journal = {Problemy analiza},
     pages = {68--86},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/}
}
TY  - JOUR
AU  - J. E. Nápoles
AU  - M. N. Quevedo Cubillos
AU  - B. Bayraktar
TI  - Integral inequalities of Simpson type via weighted integrals
JO  - Problemy analiza
PY  - 2023
SP  - 68
EP  - 86
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/
LA  - ru
ID  - PA_2023_12_2_a4
ER  - 
%0 Journal Article
%A J. E. Nápoles
%A M. N. Quevedo Cubillos
%A B. Bayraktar
%T Integral inequalities of Simpson type via weighted integrals
%J Problemy analiza
%D 2023
%P 68-86
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/
%G ru
%F PA_2023_12_2_a4
J. E. Nápoles; M. N. Quevedo Cubillos; B. Bayraktar. Integral inequalities of Simpson type via weighted integrals. Problemy analiza, Tome 12 (2023) no. 2, pp. 68-86. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/