Integral inequalities of Simpson type via weighted integrals
Problemy analiza, Tome 12 (2023) no. 2, pp. 68-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we use weighted integrals to obtain new integral inequalities of the Simpson type for the class of $(h, m, s)$-convex functions of the second type. In the work we show that the obtained results include some known from the literature, as particular cases.
Keywords: convex fuction, inequality of Simpson, weighted integral operator, $(h, s)$-convex function, Hadamard-type inequality, Hölder inequality, power mean inequality.
Mots-clés : m
@article{PA_2023_12_2_a4,
     author = {J. E. N\'apoles and M. N. Quevedo Cubillos and B. Bayraktar},
     title = {Integral inequalities of {Simpson} type via weighted integrals},
     journal = {Problemy analiza},
     pages = {68--86},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/}
}
TY  - JOUR
AU  - J. E. Nápoles
AU  - M. N. Quevedo Cubillos
AU  - B. Bayraktar
TI  - Integral inequalities of Simpson type via weighted integrals
JO  - Problemy analiza
PY  - 2023
SP  - 68
EP  - 86
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/
LA  - ru
ID  - PA_2023_12_2_a4
ER  - 
%0 Journal Article
%A J. E. Nápoles
%A M. N. Quevedo Cubillos
%A B. Bayraktar
%T Integral inequalities of Simpson type via weighted integrals
%J Problemy analiza
%D 2023
%P 68-86
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/
%G ru
%F PA_2023_12_2_a4
J. E. Nápoles; M. N. Quevedo Cubillos; B. Bayraktar. Integral inequalities of Simpson type via weighted integrals. Problemy analiza, Tome 12 (2023) no. 2, pp. 68-86. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a4/

[1] Alomari M., Hussain S., “Two inequalities of Simpson type for quasi-convex functions and applications”, Appl. Math. E-Notes, 11 (2011), 110–117 http://www.math.nthu.edu.tw/ãmen/ | MR | Zbl

[2] Bayraktar B., “Some Integral Inequalities For Functions Whose Absolute Values Of The Third Derivative is Concave And $r$-Convex”, Turkish J. Ineq., 4:2 (2020), 59–78

[3] Bayraktar B., Nápoles J. E., “Integral inequalities for mappings whose derivatives are $ (h, m, s)- $convex modfied of second type via Katugampola integrals”, Annals of the University of Craiova, Mathematics and Computer Science Series, 49:2 (2022), 371–383 | DOI | MR

[4] Bayraktar B., Nápoles J. E., Rabossi F., “On Generalizations Of Integral Inequalities”, Probl. Anal. Issues Anal., 11(29):2 (2022), 3–23 | DOI | MR | Zbl

[5] Butt S. I., Budak H., Nonlaopon K., “New Variants of Quantum Midpoint-Type Inequalities”, Symmetry, 14:12 (2022), 2599 | DOI

[6] Y. Cao, J. F. Cao, P. Z. Tan, T. S. Du, “Some parameterized inequalities arising from the tempered fractional integrals involving the $(\mu, \eta)$-incomplete gamma functions”, J. Math. Inequal., 16:3 (2022), 1091–1121 | DOI | MR

[7] Dragomir S. S., Agarwal R. P., Cerone P., “On Simpson's inequality and applications”, Journal of Inequalities and Applications, 5:6 (2000), 533–579 | MR | Zbl

[8] Du T. S., Li Y. J., Yang Z. Q., “A generalization of Simpson's inequality via differentiable mapping using extended $(s,m)$-convex functions”, Appl. Math. Comput., 293 (2017), 358–369 | DOI | MR | Zbl

[9] Du T. S., Liao J. G., Li Y. J., “Properties and integral inequalities of Hadamard-Simpson type for the generalized ($s,m)$-preinvex functions”, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126 | DOI | MR | Zbl

[10] Du T. S., Wang H., Latif M. A., Zhang Y., “Estimation type results associated to $k$-fractional integral inequalities with applications”, Journal of King Saud University-Science, 31:4 (2018), 1083–1088 | DOI

[11] Du T. S., Awan M. U., Kashuri A., Zhao S. S., “Some k-fractional extensions of the trapezium inequalities through generalized relative semi$-(m, h)$-preinvexity”, Appl. Anal., 100:3 (2019), 642–662 | DOI | MR

[12] Fu H., Peng Y., Du T. S., “Some inequalities for multiplicative tempered fractional integrals involving the $\lambda$-incomplete gamma functions”, AIMS Mathematics, 6:7 (2021), 7456–7478 | DOI | MR | Zbl

[13] Hua J., Xi B.-Y., Qi F., “Some new inequalities of Simpson type for strongly $s$-convex functions”, Afrika Mat., 26 (2015), 741–752 | DOI | MR | Zbl

[14] Hussain S., Qaisar S., “Generalizations of Simpson's Type Inequalities Through Preinvexity and Prequasiinvexity”, Punjab University Journal of Mathematics, 46:2 (2014), 1–9 | MR | Zbl

[15] Hsu K. C., Hwang S. R., Tseng K. L., “Some extended Simpson-type inequalities and applications”, Bull. Iranian Math. Soc., 43:2 (2017), 409–425 | MR | Zbl

[16] Jarad F., Abdeljawad T., Shah T., “On the weighted fractional operators of a function with respect to another function”, Fractals, 28:8 (2020), 2040011 | DOI | Zbl

[17] Kashuri A., Meftah B., Mohammed P. O., “Some weighted Simpson type inequalities for differentiable $ s- $convex functions and their applications”, Journal of Fractional Calculus and Nonlinear Systems, 1:1 (2021), 75–94 | DOI

[18] Luo C., Du T., “Generalized Simpson Type Inequalities Involving Riemann-Liouville Fractional Integrals and Their Applications”, Filomat, 34:3 (2020), 751–760 | DOI | MR | Zbl

[19] Matloka M., “Weighted Simpson type inequalities for $h$-convex functions”, J. Nonlinear Sci. Appl., 10 (2017), 5770–5780 | DOI | MR | Zbl

[20] Nápoles J. E., Bayraktar B., “On The Generalized Inequalities Of The Hermite – Hadamard Type”, FILOMAT, 35:14 (2021), 4917–4924 | DOI | MR

[21] Nápoles J. E., Bayraktar B., Butt S. I., “New integral inequalities of Hermite–Hadamard type in a generalized context”, Punjab University Journal Of Mathematics, 53:11 (2021), 765–777 | DOI | MR

[22] Nápoles J. E., Rabossi F., Samaniego A. D., Convex functions: Ariadne's thread or Charlotter's spiderweb?, Advanced Mathematical Models Applications, 5:2 (2020), 176–191

[23] Tan P. Z., Du T. S., “On the multi-parameterized inequalities involving the tempered fractional integral operators”, Filomat, 37:15 (2023), 4919–4941 | DOI | MR