On $\mathcal{i}_{2}$ and $\mathcal{i}_{2}^{\ast}$-convergence in almost surely of complex uncertain double sequences
Problemy analiza, Tome 12 (2023) no. 2, pp. 51-67

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study, we investigate the notions of $\mathcal{I}_{2}$-convergence almost surely (a.s.) and $\mathcal{I}_{2}^{\ast }$-convergence a.s. of complex uncertain double sequences in an uncertainty space, and obtain some of their features and identify the relationships between them. In addition, we put forward the concepts of $\mathcal{I}_{2}$ and $\mathcal{I} _{2}^{\ast }$-Cauchy sequence a.s. of complex uncertain double sequences and investigate their relationships.
Keywords: uncertainty theory, complex uncertain variable, $\mathcal{I}_{2}$-convergence, $\mathcal{I}_{2}^{\ast}$-convergence.
@article{PA_2023_12_2_a3,
     author = {\"O. Ki\c{s}i and M. G\"urdal},
     title = {On $\mathcal{i}_{2}$ and $\mathcal{i}_{2}^{\ast}$-convergence in almost surely of complex uncertain double sequences},
     journal = {Problemy analiza},
     pages = {51--67},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a3/}
}
TY  - JOUR
AU  - Ö. Kişi
AU  - M. Gürdal
TI  - On $\mathcal{i}_{2}$ and $\mathcal{i}_{2}^{\ast}$-convergence in almost surely of complex uncertain double sequences
JO  - Problemy analiza
PY  - 2023
SP  - 51
EP  - 67
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a3/
LA  - en
ID  - PA_2023_12_2_a3
ER  - 
%0 Journal Article
%A Ö. Kişi
%A M. Gürdal
%T On $\mathcal{i}_{2}$ and $\mathcal{i}_{2}^{\ast}$-convergence in almost surely of complex uncertain double sequences
%J Problemy analiza
%D 2023
%P 51-67
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a3/
%G en
%F PA_2023_12_2_a3
Ö. Kişi; M. Gürdal. On $\mathcal{i}_{2}$ and $\mathcal{i}_{2}^{\ast}$-convergence in almost surely of complex uncertain double sequences. Problemy analiza, Tome 12 (2023) no. 2, pp. 51-67. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a3/