Hybrid norm product and relation structures in hemirings
Problemy analiza, Tome 12 (2023) no. 2, pp. 37-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In fuzzy logic, the triangular norm ($t$-norm) is an operator that represents conjunctions. The concept of $t$-norm turned out to be a basic tool for probabilistic metric spaces, but also in several areas of mathematics, including fuzzy set theory, fuzzy decision making, probability and statistics, etc. In the study of hybrid structures, we noticed that hybrid ideals play an important role. By using $\mathfrak{T}_\Upsilon$-hybrid ideals in hemirings, the concepts of hybrid relations and the strongest $\mathfrak{T}_\Upsilon$-hybrid relations are investigated in this paper. The notion of hybrid $\mathfrak{T}_\Upsilon$-product and their relevant results are also discussed, and we prove that the direct $\mathfrak{T}_\Upsilon$-product of two $\mathfrak{T}_\Upsilon$-hybrid left $h$-ideals in hemiring is also a $\mathfrak{T}_\Upsilon$-hybrid left $h$-ideal.
Keywords: hemiring, hybrid structure, $\mathfrak{T}_\Upsilon$-hybrid ideals, $\mathfrak{T}_\Upsilon$-hybrid relations.
Mots-clés : $t$-norm
@article{PA_2023_12_2_a2,
     author = {V. Keerthika and G. Muhiuddin and M. E. Elnair and B. Elavarasan},
     title = {Hybrid norm product and relation structures in hemirings},
     journal = {Problemy analiza},
     pages = {37--50},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a2/}
}
TY  - JOUR
AU  - V. Keerthika
AU  - G. Muhiuddin
AU  - M. E. Elnair
AU  - B. Elavarasan
TI  - Hybrid norm product and relation structures in hemirings
JO  - Problemy analiza
PY  - 2023
SP  - 37
EP  - 50
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a2/
LA  - en
ID  - PA_2023_12_2_a2
ER  - 
%0 Journal Article
%A V. Keerthika
%A G. Muhiuddin
%A M. E. Elnair
%A B. Elavarasan
%T Hybrid norm product and relation structures in hemirings
%J Problemy analiza
%D 2023
%P 37-50
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a2/
%G en
%F PA_2023_12_2_a2
V. Keerthika; G. Muhiuddin; M. E. Elnair; B. Elavarasan. Hybrid norm product and relation structures in hemirings. Problemy analiza, Tome 12 (2023) no. 2, pp. 37-50. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a2/

[1] Alsina C., Trillas E., Valverde L., “On some logical connectives for fuzzy set theory”, J. Math. Anal. Appl., 93:1 (1983), 15–26 | DOI | MR | Zbl

[2] Elavarasan B., Muhiuddin G., Porselvi K., Jun Y. B., “Hybrid structures applied to ideals in near-rings”, Complex Intell. Syst., 7 (2021), 1489–1498 | DOI | MR

[3] Jun Y. B., Song S. Z., Muhiuddin G., “Hybrid structures and applications”, Annals of Communications in Mathematics, 1:1 (2018), 11–25 | MR

[4] Jun Y. B., Oztrk M. A., Song S. Z., “On fuzzy h-ideals in hemirings”, Inform. Sci., 162 (2004), 211–226 | DOI | MR | Zbl

[5] Henriksen M., “Ideals in semirings with commutative addition”, Amer. Math. Soc. Notices, 6 (1958), 321

[6] La Torre D. R., “On h-ideals and k-ideals in hemirings”, Publ. Math. Debrecen, 12 (1965), 219–226 | MR | Zbl

[7] Lizuka K., “On the Jacobson radical of a semiring”, Tohoku Math. J., 11:3 (1959), 409–421 | DOI | MR

[8] Maji K., Roy A. R., Biswas R., “An application of soft sets in a decision making problem”, Comput. Math. with Appl., 44 (2002), 1077–1083 | DOI | MR | Zbl

[9] Meenakshi S., Muhiuddin G., Elavarasan B., Al-Kadi D., “Hybrid ideals in near-subtraction semigroups”, AIMS Mathematics, 7:7 (2022), 13493–13507 | DOI | MR

[10] Molodtsov D., “Soft set theory-first results”, Comput. Math. with Appl., 37:4-5 (1999), 19–31 | DOI | MR | Zbl

[11] Muhiuddin G., John J. C. G., Elavarasan B., Porselvi K., Al-kadi D., “Properties of k-hybrid ideals in ternary semiring”, J. Intell. Fuzzy Syst., 42:6 (2022), 5799–5807 | DOI

[12] Porselvi K., Elavarasan B., “On hybrid interior ideals in semigroups”, Probl. Anal. Issues Anal., 8(26):3 (2019), 137–146 | DOI | MR

[13] Porselvi K., Muhiuddin G., Elavarasan B., Assiry A., “Hybrid nil radical of a ring”, Symmetry, 14:7 (2022), 1367 | DOI

[14] Schweizer B., Sklar A., Probabilistic metric spaces, North-Holland, Amsterdam, 1983 | MR | Zbl

[15] Vandiver H. S., “Note on a simple type of algebra in which cancellation law of addition does not hold”, Bull. Amer. Math. Soc., 40 (1934), 914–920 | DOI | MR | Zbl

[16] Zadeh L. A., “Fuzzy sets”, Inform Control, 8:3 (1965), 338–353 | DOI | MR | Zbl

[17] Zhan J., “On properties of fuzzy left h-ideals in hemirings with t-norms”, Int. J. Math. Sci., 19 (2005), 3127–3144 | DOI | MR | Zbl