Statistical bounded sequences of bi-complex numbers
Problemy analiza, Tome 12 (2023) no. 2, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend statistical bounded sequences of real or complex numbers to the setting of sequences of bi-complex numbers. We define the statistical bounded sequence space of bi-complex numbers $b_{\infty}^{*}$ and also define the statistical bounded sequence spaces of ideals $\mathbb{I}_{\infty}^{1}$ and $\mathbb{I}_{\infty}^{2}$. We prove some inclusion relations and provide examples. We establish that $b_{\infty}^{*}$ is the direct sum of $\mathbb{I}_{\infty}^{1}$ and $ \mathbb{I}_{\infty}^{2}$. Also, we prove the decomposition theorem for statistical bounded sequences of bi-complex numbers. Finally, summability properties in the light of J.A. Fridy's work are studied.
Keywords: natural density, bi-complex, statistical bounded
Mots-clés : norm.
@article{PA_2023_12_2_a0,
     author = {S. Bera and B. Ch. Tripathy},
     title = {Statistical bounded sequences of bi-complex numbers},
     journal = {Problemy analiza},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/}
}
TY  - JOUR
AU  - S. Bera
AU  - B. Ch. Tripathy
TI  - Statistical bounded sequences of bi-complex numbers
JO  - Problemy analiza
PY  - 2023
SP  - 3
EP  - 16
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/
LA  - en
ID  - PA_2023_12_2_a0
ER  - 
%0 Journal Article
%A S. Bera
%A B. Ch. Tripathy
%T Statistical bounded sequences of bi-complex numbers
%J Problemy analiza
%D 2023
%P 3-16
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/
%G en
%F PA_2023_12_2_a0
S. Bera; B. Ch. Tripathy. Statistical bounded sequences of bi-complex numbers. Problemy analiza, Tome 12 (2023) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/

[1] Altinok M., Kucukaslan M. and Kaya U., “Statistical extension of bounded sequence space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70:1 (2021), 82–99 | DOI | MR | Zbl

[2] Albayrak H., Babaarslan F., Ölmez Ö. and Aytar S., “On the statistical convergence of nested sequences of sets”, Probl. Anal. Issues Anal., 11(29):3 (2022), 3–14 | DOI | MR

[3] Buck R. C., “Generalized asymptotic density”, Amer. Jour. Math., 75 (1953), 335–346 | DOI | MR | Zbl

[4] Fridy J. A., “On statistically convergence”, Analysis, 5 (1985), 301–313 | DOI | MR | Zbl

[5] Kuzhaev A. F., “On the necessary and sufficient conditions for the measurability of a positive sequence”, Probl. Anal. Issues Anal., 8(26):3 (2019), 63–72 | DOI | MR | Zbl

[6] Nath J., Tripathy B. C. and Bhattacharya B., “On strongly almost convergence of double sequenes via complex uncertain variable”, Probl. Anal. Issues Anal., 11(29):1 (2022), 102–121 | DOI | MR | Zbl

[7] Price G. B., An introduction to multicomplex space and function, Marcel Dekker Inc, 1991 | MR

[8] Rath D., Tripathy B. C., “Matrix maps on sequence spaces associated with sets of integers”, Indian Jour. Pure Appl. Math., 27:2 (1996), 197–206 | MR | Zbl

[9] Rochon D., Shapiro M., “On algebraic properties of bi-complex and hyperbolic numbers”, Anal. Univ. Oradea, fasc. Math., 11 (2004), 71–110 | MR | Zbl

[10] Sager N., Sağ{\i}r B., “On completeness of some bi-complex sequence space”, Palestine Journal of Mathematics, 9:2 (2020), 891–902 | MR | Zbl

[11] Salat T., “On statistically convergent sequences of real numbers”, Math. Slovaca, 30:2 (1980), 139–150 | MR | Zbl

[12] Segre C., “Le rappresentazioni reali delle forme complessee gli enti iperalgebrici”, Math. Anu., 40 (1892), 413–467 | DOI | MR

[13] Srivastava R. K., Srivastava N. K., “On a class of entire bi-complex sequences”, South East Asian J. Math. Math. Sc., 5:3 (2007), 47–68 | MR

[14] Tripathy B. C., Nath P. K., “Statistical convergence of complex uncertain sequences”, New Mathematics and Natural Computation, 13:3 (2017), 359–374 | DOI | MR

[15] Tripathy B. C., Sen M., “On generalized statistically convergent sequences”, Indian J. Pure Appl. Math., 32:11 (2001), 1689–1694 | MR | Zbl

[16] Tripathy B. C., “On statistically convergent and statistically bounded sequences”, Bull. Malaysian Math. Soc. (second series), 20 (1997), 31–33 | MR | Zbl

[17] Wagh M. A., “On certain spaces of bi-complex sequences”, Inter. J. Phy. Chem. and Math. Fund., 7:1 (2014), 1–6