Statistical bounded sequences of bi-complex numbers
Problemy analiza, Tome 12 (2023) no. 2, pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend statistical bounded sequences of real or complex numbers to the setting of sequences of bi-complex numbers. We define the statistical bounded sequence space of bi-complex numbers $b_{\infty}^{*}$ and also define the statistical bounded sequence spaces of ideals $\mathbb{I}_{\infty}^{1}$ and $\mathbb{I}_{\infty}^{2}$. We prove some inclusion relations and provide examples. We establish that $b_{\infty}^{*}$ is the direct sum of $\mathbb{I}_{\infty}^{1}$ and $ \mathbb{I}_{\infty}^{2}$. Also, we prove the decomposition theorem for statistical bounded sequences of bi-complex numbers. Finally, summability properties in the light of J.A. Fridy's work are studied.
Keywords: natural density, bi-complex, statistical bounded
Mots-clés : norm.
@article{PA_2023_12_2_a0,
     author = {S. Bera and B. Ch. Tripathy},
     title = {Statistical bounded sequences of bi-complex numbers},
     journal = {Problemy analiza},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/}
}
TY  - JOUR
AU  - S. Bera
AU  - B. Ch. Tripathy
TI  - Statistical bounded sequences of bi-complex numbers
JO  - Problemy analiza
PY  - 2023
SP  - 3
EP  - 16
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/
LA  - en
ID  - PA_2023_12_2_a0
ER  - 
%0 Journal Article
%A S. Bera
%A B. Ch. Tripathy
%T Statistical bounded sequences of bi-complex numbers
%J Problemy analiza
%D 2023
%P 3-16
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/
%G en
%F PA_2023_12_2_a0
S. Bera; B. Ch. Tripathy. Statistical bounded sequences of bi-complex numbers. Problemy analiza, Tome 12 (2023) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/PA_2023_12_2_a0/