Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight
Problemy analiza, Tome 12 (2023) no. 1, pp. 3-24

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a transference result, several inequalities of approximation by entire functions of exponential type in $\mathcal{C}(\mathbf{R})$, the class of bounded uniformly continuous functions defined on $\mathbf{R}:=\left(-\infty, +\infty \right)$, are extended to the Lebesgue spaces $L^{p}\left( \mathbf{\varrho }dx\right) $ $1\leq p\infty $ with Muckenhoupt weight $\mathbf{\varrho }$. This gives us a different proof of Jackson type direct theorems and Bernstein-Timan type inverse estimates in $L^{p}\left( \mathbf{\varrho }dx\right) $. Results also cover the case $p=1$.
Keywords: Muckenhoupt weight, entire functions of exponential type, one-sided Steklov operator, best approximation, direct theorem, inverse theorem, modulus of smoothness, Marchaud-type inequality, K-functional.
Mots-clés : Lebesgue spaces
@article{PA_2023_12_1_a0,
     author = {R. Akg\"un},
     title = {Exponential approximation of functions in {Lebesgue} spaces with {Muckenhoupt} weight},
     journal = {Problemy analiza},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2023_12_1_a0/}
}
TY  - JOUR
AU  - R. Akgün
TI  - Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight
JO  - Problemy analiza
PY  - 2023
SP  - 3
EP  - 24
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2023_12_1_a0/
LA  - en
ID  - PA_2023_12_1_a0
ER  - 
%0 Journal Article
%A R. Akgün
%T Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight
%J Problemy analiza
%D 2023
%P 3-24
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2023_12_1_a0/
%G en
%F PA_2023_12_1_a0
R. Akgün. Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight. Problemy analiza, Tome 12 (2023) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/PA_2023_12_1_a0/