Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_3_a7, author = {Y. Touail}, title = {On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions}, journal = {Problemy analiza}, pages = {109--124}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a7/} }
TY - JOUR AU - Y. Touail TI - On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions JO - Problemy analiza PY - 2022 SP - 109 EP - 124 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2022_11_3_a7/ LA - en ID - PA_2022_11_3_a7 ER -
Y. Touail. On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions. Problemy analiza, Tome 11 (2022) no. 3, pp. 109-124. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a7/
[1] Altun I., Minak G., Dǎg H., “Multivalued F-contractions on complete metric spaces”, J. Nonlinear Convex Anal., 16 (2015), 659–666 | MR | Zbl
[2] Assad N. A., Kirk W. A., “Fixed point theorems for set-valued mappings of contractive type”, Pacific J. Math., 43 (1972), 553–562 | DOI | MR
[3] Baghani H., Eshaghi Gordji M., Ramezani M., “Orthogonal sets: The axiom of choice and proof of a fixed point theorem”, J. Fixed Point Theory Appl., 18 (2016), 465–477 | DOI | MR | Zbl
[4] Eshaghi Gordji M., Ramezani M., De La Sen M., Cho Y. J., “On orthogonal sets and Banach fixed point theorem”, Fixed Point Theory, 18 (2017), 569–578 | DOI | MR | Zbl
[5] Michael E., “Continuous selection. I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl
[6] Nadler S. B., “Multivalued contraction mappings”, Pacific. J. Math., 30 (1969), 475–488 | DOI | MR | Zbl
[7] Sîntămărian A., “Integral inclusions of Fredlhom type relative to multivalued $\varphi$-contrction”, Semin. Fixed Point Theory Appl., 3 (2002), 361–368 | MR
[8] Secelean N. A., Wardowski D., “$\psi$F-contractions: not necessarily nonexpansive Picard operators”, Results Math., 70:3-4 (2016), 415–431 | DOI | MR | Zbl
[9] Touail Y., El Moutawakil D., “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ricerche mat., 2020 | DOI | MR
[10] Touail Y., El Moutawakil D., “$\perp_{\psi} F $-contractions and some fixed point results on generalized orthogonal sets”, Rend. Circ. Mat. Palermo, II, 2020 | DOI | MR
[11] Touail Y., El Moutawakil D., “Fixed point theorems on orthogonal complete metric spaces with an application”, Int. J. Nonl. Anal. Appl., 2021, 1801–1809 | DOI | MR
[12] Touail Y., El Moutawakil D., “Some new common fixed point theorems for contractive selfmappings with applications”, Asian-European Journal of Mathematics, 2021 | DOI | MR | Zbl
[13] Khalehoghli S., Rahimi H., Eshaghi Gordji M., “Fixed point theorems in R-metric spaces with applications”, AIMS Mathematics, 5:4 (2020), 3125–3137 | DOI | MR | Zbl
[14] Wardowski D., “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 94 (2012) | DOI | MR | Zbl