On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions
Problemy analiza, Tome 11 (2022) no. 3, pp. 109-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study existence of fixed points for multivalued $\perp_{\psi F}$ -contractions in the setting of generalized orthogonal sets by extending some basic notions related to this new direction of research. The proven theorems generalize and improve many known results in the literature. Also, an application to a Volterra-type integral inclusion is provided.
Keywords: multivalued $\perp_{\psi F}$ -Contractions,Fixed point, generalized orthogonal set, generalized orthogonal complete metric space, integral inclusion.
@article{PA_2022_11_3_a7,
     author = {Y. Touail},
     title = {On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions},
     journal = {Problemy analiza},
     pages = {109--124},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a7/}
}
TY  - JOUR
AU  - Y. Touail
TI  - On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions
JO  - Problemy analiza
PY  - 2022
SP  - 109
EP  - 124
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_3_a7/
LA  - en
ID  - PA_2022_11_3_a7
ER  - 
%0 Journal Article
%A Y. Touail
%T On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions
%J Problemy analiza
%D 2022
%P 109-124
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_3_a7/
%G en
%F PA_2022_11_3_a7
Y. Touail. On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions. Problemy analiza, Tome 11 (2022) no. 3, pp. 109-124. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a7/

[1] Altun I., Minak G., Dǎg H., “Multivalued F-contractions on complete metric spaces”, J. Nonlinear Convex Anal., 16 (2015), 659–666 | MR | Zbl

[2] Assad N. A., Kirk W. A., “Fixed point theorems for set-valued mappings of contractive type”, Pacific J. Math., 43 (1972), 553–562 | DOI | MR

[3] Baghani H., Eshaghi Gordji M., Ramezani M., “Orthogonal sets: The axiom of choice and proof of a fixed point theorem”, J. Fixed Point Theory Appl., 18 (2016), 465–477 | DOI | MR | Zbl

[4] Eshaghi Gordji M., Ramezani M., De La Sen M., Cho Y. J., “On orthogonal sets and Banach fixed point theorem”, Fixed Point Theory, 18 (2017), 569–578 | DOI | MR | Zbl

[5] Michael E., “Continuous selection. I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[6] Nadler S. B., “Multivalued contraction mappings”, Pacific. J. Math., 30 (1969), 475–488 | DOI | MR | Zbl

[7] Sîntămărian A., “Integral inclusions of Fredlhom type relative to multivalued $\varphi$-contrction”, Semin. Fixed Point Theory Appl., 3 (2002), 361–368 | MR

[8] Secelean N. A., Wardowski D., “$\psi$F-contractions: not necessarily nonexpansive Picard operators”, Results Math., 70:3-4 (2016), 415–431 | DOI | MR | Zbl

[9] Touail Y., El Moutawakil D., “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ricerche mat., 2020 | DOI | MR

[10] Touail Y., El Moutawakil D., “$\perp_{\psi} F $-contractions and some fixed point results on generalized orthogonal sets”, Rend. Circ. Mat. Palermo, II, 2020 | DOI | MR

[11] Touail Y., El Moutawakil D., “Fixed point theorems on orthogonal complete metric spaces with an application”, Int. J. Nonl. Anal. Appl., 2021, 1801–1809 | DOI | MR

[12] Touail Y., El Moutawakil D., “Some new common fixed point theorems for contractive selfmappings with applications”, Asian-European Journal of Mathematics, 2021 | DOI | MR | Zbl

[13] Khalehoghli S., Rahimi H., Eshaghi Gordji M., “Fixed point theorems in R-metric spaces with applications”, AIMS Mathematics, 5:4 (2020), 3125–3137 | DOI | MR | Zbl

[14] Wardowski D., “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 94 (2012) | DOI | MR | Zbl