Stability-preserving perturbation of the maximal terms of Dirichlet series
Problemy analiza, Tome 11 (2022) no. 3, pp. 30-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study stability of the maximal term of the Dirichlet series with positive exponents, the sum of which is an entire function. This problem is of interest, because the Leont'ev formulas for coefficients calculated using a biorthogonal system of functions play the key role in obtaining asymptotic estimates for entire Dirichlet series on various continua going to infinity (for example, curves). This fact naturally leads to the need to study the behavior of the logarithm of the maximum term also for the Hadamard composition of the corresponding Dirichlet series. For the wide class of entire Dirichlet series determined by a convex growth majorant, we establish a criterion for the equivalence of the logarithms of the moduli of the original series and a modified Dirichlet series outside some exceptional set.
Keywords: Dirichlet series, stability of the maximal term, Borel–Nevanlinna lemma, convex function.
Mots-clés : Hadamard composition
@article{PA_2022_11_3_a2,
     author = {A. M. Gaisin and N. N. Aitkuzhina},
     title = {Stability-preserving perturbation of the maximal terms of {Dirichlet} series},
     journal = {Problemy analiza},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a2/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - N. N. Aitkuzhina
TI  - Stability-preserving perturbation of the maximal terms of Dirichlet series
JO  - Problemy analiza
PY  - 2022
SP  - 30
EP  - 44
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_3_a2/
LA  - en
ID  - PA_2022_11_3_a2
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A N. N. Aitkuzhina
%T Stability-preserving perturbation of the maximal terms of Dirichlet series
%J Problemy analiza
%D 2022
%P 30-44
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_3_a2/
%G en
%F PA_2022_11_3_a2
A. M. Gaisin; N. N. Aitkuzhina. Stability-preserving perturbation of the maximal terms of Dirichlet series. Problemy analiza, Tome 11 (2022) no. 3, pp. 30-44. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a2/

[1] Gaisin A. M., Aitkuzhina N. N., “Stability criterion for maximal terms of Dirichlet series”, Journal of Math.Sciences, 260:6 (2022), 715–724 | DOI | MR | Zbl

[2] Sbornik: Mathematics, 194:8 (2003), 1167–1194 | DOI | DOI | MR | Zbl

[3] Russian Math. (Iz. VUZ), 46:9 (2002), 13–22 | MR | Zbl

[4] Leont'ev A. F., Exponential Series, Nauka, M., 1976 (in Russian) | MR | Zbl

[5] Ukr Math J., 57 (2005), 686–693 | DOI | MR | Zbl