On $\mathcal{I^K}$-supremum, $\mathcal{I^K}$-infimum and related results
Problemy analiza, Tome 11 (2022) no. 3, pp. 15-29

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of $\mathcal{I^K}$-supremum, $\mathcal{I^K}$-infimum, $\mathcal{I^K}-$limit superior, and $\mathcal{I^K}-$limit inferior and investigate a few implication relationships between them.
Keywords: ideal, filter, $\mathcal{I^K}$-supremum, $\mathcal{I^K}$-infimum, $\mathcal{I^K}$-limit superior, $\mathcal{I^K}$-limit inferior.
@article{PA_2022_11_3_a1,
     author = {C. Choudhury and S. Debnath},
     title = {On $\mathcal{I^K}$-supremum, $\mathcal{I^K}$-infimum and related results},
     journal = {Problemy analiza},
     pages = {15--29},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_3_a1/}
}
TY  - JOUR
AU  - C. Choudhury
AU  - S. Debnath
TI  - On $\mathcal{I^K}$-supremum, $\mathcal{I^K}$-infimum and related results
JO  - Problemy analiza
PY  - 2022
SP  - 15
EP  - 29
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_3_a1/
LA  - en
ID  - PA_2022_11_3_a1
ER  - 
%0 Journal Article
%A C. Choudhury
%A S. Debnath
%T On $\mathcal{I^K}$-supremum, $\mathcal{I^K}$-infimum and related results
%J Problemy analiza
%D 2022
%P 15-29
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_3_a1/
%G en
%F PA_2022_11_3_a1
C. Choudhury; S. Debnath. On $\mathcal{I^K}$-supremum, $\mathcal{I^K}$-infimum and related results. Problemy analiza, Tome 11 (2022) no. 3, pp. 15-29. http://geodesic.mathdoc.fr/item/PA_2022_11_3_a1/