Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces
Problemy analiza, Tome 11 (2022) no. 2, pp. 106-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using one-sided Steklov means, we introduce a new modulus of smoothness in weighted Orlicz spaces and state its equivalence with a special $K$-functional. We prove Stechkin-Nikol'skii-type inequality for trigonometric polynomials and direct estimates for the approximation by Riesz-Zygmund, Vallée-Poussin, and Euler means in weighted Orlicz spaces. By these results, several types of realization functionals equivalent to the above cited $K$-functional in points $1/n$, $n\in\mathbb N$, are constructed.
Keywords: weighted Orlicz spaces, $K$-functional, realization functional, Riesz-Zygmund means, Euler means.
@article{PA_2022_11_2_a7,
     author = {S. S. Volosivets},
     title = {Approximation by linear means of {Fourier} series and realization functionals in weighted {Orlicz} spaces},
     journal = {Problemy analiza},
     pages = {106--118},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces
JO  - Problemy analiza
PY  - 2022
SP  - 106
EP  - 118
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/
LA  - en
ID  - PA_2022_11_2_a7
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces
%J Problemy analiza
%D 2022
%P 106-118
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/
%G en
%F PA_2022_11_2_a7
S. S. Volosivets. Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces. Problemy analiza, Tome 11 (2022) no. 2, pp. 106-118. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/

[1] Bary N. K., A treatise on trigonometric series, Pergamon Press, New York, 1964 | MR | Zbl

[2] Bary N. K., Stechkin S. B., “Best approximations and differential properties of two conjugate functions”, Trudy Moskov. Mat. Obshch., 5, 1956, 483–522 (in Russian) | MR | Zbl

[3] Bennett C., Sharpley R., Interpolation of operators, Academic Press, New York, 1988 | MR | Zbl

[4] Böttcher A., Karlovich Yu., Carleson curves, Muckenhoupt weights and Toeplitz operators, Birkhäuser, Basel, 1997 | MR | Zbl

[5] Boyd D.W., “Indices for the Orlicz spaces”, Pacific J. Math., 38:2 (1971), 315–323 | DOI | MR | Zbl

[6] DeVore R. A., Lorentz G. G., Constructive approximation, Springer, Berlin-Heidelberg-New York, 1993 | MR | Zbl

[7] Ditzian Z., Hristov V. H., Ivanov K. G., “Moduli of smoothness and $K$-functionals in $L_p$, $0

1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl

[8] Guven A., Israfilov D. M., “On approximation in weighted Orlicz spaces”, Math. Slovaca, 62:1 (2012), 77–86 | DOI | MR | Zbl

[9] Israfilov D. M., Testici A., “Some inverse and simultaneous approximation theorems in weighted variable exponent Lebesgue spaces”, Analysis Math., 44:4 (2018), 475–492 | DOI | MR | Zbl

[10] Israfilov D. M., Guven A., “Approximation by trigonometric polynomials in weighted Orlicz spaces”, Studia Math., 174:2 (2006), 147–168 | DOI | MR | Zbl

[11] Jafarov S. Z., “Linear methods of summing Fourier series and approximation in weighted Orlicz spaces”, Turk. J. Math., 42:6 (2018), 2916–2925 | DOI | MR | Zbl

[12] Jafarov S. Z., “Simultaneous approximation properties of de la Vallée-Poussin means in weighted Orlicz spaces”, J. Class. Anal., 17:2 (2020), 189–198 | DOI | MR | Zbl

[13] Krasnosel'skii M. A., Rutickii Ya. B., Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961 | MR | Zbl

[14] Hardy G. H., Divergent series, Oxford Univ. Press, Oxford, 1949 | MR | Zbl

[15] Matuszewska W., Orlicz W., “On certain properties of $\varphi$-functions”, Bull. Acad. Polon. Sci. Ser. sci. math. astr. et phys., 8 (1960), 439–443 | MR | Zbl

[16] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[17] Rao M. M., Ren Z. D., Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250, Dekker, New York, 2002 | MR | Zbl

[18] Izv. Math., 77:2, 407–434 | DOI | DOI | MR | Zbl

[19] Volosivets S. S., “Approximation of functions and their conjugates in variable Lebesgue spaces”, Sbornik: Math., 208:1 (2017), 44–59 | DOI | MR | Zbl

[20] Volosivets S. S., “Modified modulus of smoothness and approxiamtion in weighted Lorentz spaces by Borel and Euler means”, Probl. Anal. Issues Anal., 10(28):1 (2021), 87–100 | DOI | MR | Zbl