Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces
Problemy analiza, Tome 11 (2022) no. 2, pp. 106-118

Voir la notice de l'article provenant de la source Math-Net.Ru

Using one-sided Steklov means, we introduce a new modulus of smoothness in weighted Orlicz spaces and state its equivalence with a special $K$-functional. We prove Stechkin-Nikol'skii-type inequality for trigonometric polynomials and direct estimates for the approximation by Riesz-Zygmund, Vallée-Poussin, and Euler means in weighted Orlicz spaces. By these results, several types of realization functionals equivalent to the above cited $K$-functional in points $1/n$, $n\in\mathbb N$, are constructed.
Keywords: weighted Orlicz spaces, $K$-functional, realization functional, Riesz-Zygmund means, Euler means.
@article{PA_2022_11_2_a7,
     author = {S. S. Volosivets},
     title = {Approximation by linear means of {Fourier} series and realization functionals in weighted {Orlicz} spaces},
     journal = {Problemy analiza},
     pages = {106--118},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces
JO  - Problemy analiza
PY  - 2022
SP  - 106
EP  - 118
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/
LA  - en
ID  - PA_2022_11_2_a7
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces
%J Problemy analiza
%D 2022
%P 106-118
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/
%G en
%F PA_2022_11_2_a7
S. S. Volosivets. Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces. Problemy analiza, Tome 11 (2022) no. 2, pp. 106-118. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a7/