Weaving continuous $K$-frames in Hilbert spaces
Problemy analiza, Tome 11 (2022) no. 2, pp. 91-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce and study weaving continuous $K$-frames in Hilbert spaces. We first introduce a useful result for the production of these frames and then examine them under the influence of a bounded operator. Due to the basic and useful applications of different types of frames in restoring some deleted information on data transfer issues, we give at the end of the paper some conditions of setting the frame under the removal of some members of the measure space and we show that this is related to the discrete $K$-frames.
Keywords: continuous-frames,continuous $K$-frames, weaving continuous $K$-frames.
@article{PA_2022_11_2_a6,
     author = {Gh. Rahimlou},
     title = {Weaving continuous $K$-frames in {Hilbert} spaces},
     journal = {Problemy analiza},
     pages = {91--105},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a6/}
}
TY  - JOUR
AU  - Gh. Rahimlou
TI  - Weaving continuous $K$-frames in Hilbert spaces
JO  - Problemy analiza
PY  - 2022
SP  - 91
EP  - 105
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a6/
LA  - en
ID  - PA_2022_11_2_a6
ER  - 
%0 Journal Article
%A Gh. Rahimlou
%T Weaving continuous $K$-frames in Hilbert spaces
%J Problemy analiza
%D 2022
%P 91-105
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_2_a6/
%G en
%F PA_2022_11_2_a6
Gh. Rahimlou. Weaving continuous $K$-frames in Hilbert spaces. Problemy analiza, Tome 11 (2022) no. 2, pp. 91-105. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a6/

[1] Ali S. T., Antoine J. P. and Gazeau J. P., “Continuous frames in Hilbert spaces”, Annals. of Physics, 222 (1993), 1–37 | DOI | MR | Zbl

[2] Alizadeh E., Sadri V., “On Continuous weaving G-frames in Hilbert spaces”, Wavelets and Linear Algebra, 7:1 (2020), 23–36 | DOI | MR

[3] Arabyani Neyshaburi F., Arefijamal A., “Characterization and Construction of $K$-Fusion Frames and Their Duals in Hilbert Spaces”, Results in Math., 73(47) (2018) | DOI | MR | Zbl

[4] Arabyani Neyshaburi F., Arefijamal A., “Some constructions of $K$-frames and their duals”, Rocky Mt. J. Math., 47:6 (2017), 1749–1764 | DOI | MR | Zbl

[5] Balazs P., Antoine J. P., Grybos A., “Weighted and controlled frames: mutual relationship and first numerical properties”, International Journal of Wavelets, Multiresolution and Information Processing, 8:1 (2010), 109–132 | DOI | MR | Zbl

[6] Bemrose T., Casazza P. G., Gröchenic K., Lammers M. C, Lynch R. G., “Weaving frames”, Operators and Matrices, 10:4 (2016), 1093–1116 | DOI | MR | Zbl

[7] Casazza P. G., Kutyniok G., “Frames of Subspaces”, Contemp. Math., 345, 2004, 87–114 | DOI | MR

[8] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, 2016 | MR | Zbl

[9] Deepshikha, Vashisht L. K., “Weaving K-Frames in Hilbert Spaces”, Results Math., 73:2 (2018), 81 | DOI | MR | Zbl

[10] Duffin R. J., Schaeffer A. C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:1 (1952), 341–366 | DOI | MR | Zbl

[11] Faroughi M. H., Ahmadi R., Afsar Z., “Some Properties of C-Frames of Subspaces”, J. Nonlinear Sci. Appl., 1:3 (2008), 155–168 | DOI | MR | Zbl

[12] Faroughi M. H., Osgooei E., “C-Frames and C-Bessel Mappings”, Bull. Iranian Math. Soc., 38:1 (2012), 203–222 | MR | Zbl

[13] Feichtinger H. G., Werther T., “Atomic Systems for Subspaces”, Proceedings SampTA (Orlando, FL, 2001), 163–165 | MR

[14] Găvruţa L., “Frames for Operators”, Appl. Comp. Harm. Annal., 32 (2012), 139–144 | DOI | MR

[15] Hua D., Huang Y., “Controlled $K$-g-frames in Hilbert spaces”, Results. Math., 72 (2017), 1227–1238 | DOI | MR | Zbl

[16] Rahimlou Gh., Ahmadi R., Jafarizadeh M. A., Nami S., “Some properties of Continuous $K$-frames in Hilbert spaces”, Sahand Comm. Math. Anal., 15:1 (2019), 169–187 | DOI | MR | Zbl

[17] Rahimlou Gh., Ahmadi R., Jafarizadeh M. A., Nami S., “Continuous $k$-frames and their dual in Hilbert spaces”, Sahand Comm. Math. Anal., 17:3 (2020), 145–160 | DOI | Zbl

[18] Rudin W., Real and Complex Analysis, Tata Mc Graw-Hill Editions, New York, 1987 | MR

[19] Sadri V., Rahimlou Gh., Ahmadi R., “Continuous weaving fusion frames in Hilbert spaces”, Int. J. Wavelets Multi. Info. Proc., 18:5 (2020), 2050035, 17 pp. | DOI | MR | Zbl

[20] Sadri V., Rahimlou Gh., Ahmadi R., Zarghami Farfar R., “Construction of $K$-g-fusion frames and their dual in Hilbert spaces”, Bull. Transilvania Un. Braşov, Series III, 13 (62):1 (2020), 17–32 | MR | Zbl

[21] Sadri V., Ahmadi R., Jafarizadeh M. A., Nami S., “Continuous $k$-fusion frames in Hilbert spaces”, Sahand Comm. Math. Anal., 17:1 (2020), 39–55 | DOI | Zbl

[22] Sun W., “G-Frames and G-Riesz bases”, J. Math. Anal. Appl., 326 (2006), 437–452 | DOI | MR

[23] Vashisht L. K., Deepshikha, “On continuous weaving frames”, Adv. Pure Appl. Math., 8:1 (2017), 15–31 | DOI | MR | Zbl

[24] Vashisht L. K., Garg S., Deepshikha, Das P. K., “On generalized weaving frames in Hilbert spaces”, Rocky Mountain J. Math., 48:2 (2018), 661–685 | DOI | MR | Zbl

[25] Xiao X., Zhu Y., Găvruţa L., “Some Properties of $K$-Frames in Hilbert Spaces”, Results. Math., 63 (2013), 1243–1255 | DOI | MR | Zbl