Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_2_a5, author = {S. V. Puvar and R. G. Vyas}, title = {\'Ciri\'c-type results in quasi-metric spaces and $G$-metric spaces using simulation function}, journal = {Problemy analiza}, pages = {72--90}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a5/} }
TY - JOUR AU - S. V. Puvar AU - R. G. Vyas TI - \'Ciri\'c-type results in quasi-metric spaces and $G$-metric spaces using simulation function JO - Problemy analiza PY - 2022 SP - 72 EP - 90 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a5/ LA - en ID - PA_2022_11_2_a5 ER -
S. V. Puvar; R. G. Vyas. \'Ciri\'c-type results in quasi-metric spaces and $G$-metric spaces using simulation function. Problemy analiza, Tome 11 (2022) no. 2, pp. 72-90. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a5/
[1] Ansari A. H., “Note on $\varphi$-$\psi$-contractive type mappings and related fixed point”, The 2nd Regional Conference on Math. Appl. (PNU, Sept. 2014), 377–380
[2] Ćirić L. B., “A generalization of Banach's contraction principle”, Proc. Amer. Math. Soc., 45:2 (1974), 267–273 | DOI | MR | Zbl
[3] Das K. M., Naik K. V., “Common fixed point theorems for commuting maps on a metric space”, Proc. Amer. Math. Soc., 77:3 (1979), 369–373 | DOI | MR | Zbl
[4] Jleli M., Samet B., “Remarks on G-metric spaces and fixed point theorems”, Fixed Point Theory Appl., 2012:1 (2012), 210, 7 pp. | DOI | MR | Zbl
[5] Jovanović M., Kadelburg K., and Radenović S., “Common fixed point results in metric-type spaces”, Fixed Point Theory Appl., 2010 (2010), 978121, 15 pp. | DOI | MR | Zbl
[6] Jungck G., “Compatible mappings and common fixed points (2)”, Int. J. Math. Math. Sci., 11:2 (1988), 285–288 | DOI | MR | Zbl
[7] Khojasteh F., Shukla S., Radenović S., “A new approach to the study of fixed point theory for simulation functions”, Filomat, 29:6 (2015), 1189–1194 | DOI | MR | Zbl
[8] Liu X. L., Ansari A. H., Chandok S. and Radenović S., “On some results in metric spaces using auxiliary simulation functions via new functions”, J. Comput. Anal. Appl., 24:6 (2018), 1103–1114 | MR
[9] Radenović S., Chandok S., “Simulation type functions and coincidence points”, Filomat, 32:1 (2018), 141–147 | DOI | MR | Zbl
[10] Roldán-Lupez-de-Hierro A. F., Karapinar E., Roldán-Lupez-de-Hierro C., and Martínez-Moreno J., “Coincidence point theorems on metric spaces via simulation functions”, J. Comput. Appl. Math., 275 (2015), 345–355 | DOI | MR | Zbl
[11] Roldán-López-de-Hierro A. F., Shahzad N., “Common fixed point theorems under (R, S)-contractivity conditions”, Fixed Point Theory Appl., 2016 (2016), 55, 25 pp. | DOI | MR | Zbl
[12] Roldán-López-de-Hierro A. F., Karap{\i}nar E., O'Regan D., “Coincidence point theorems on quasi-metric spaces via simulation functions and applications to G-metric spaces”, J. Fixed Point Theory Appl., 20:3 (2018), 112, 21 pp. | DOI | MR | Zbl
[13] Samet B., Vetro C., Vetro F., “Remarks on G-metric spaces”, Intern. J. Anal., 2013 (2013), 917158, 6 pp. | DOI | MR | Zbl
[14] Shahi P., Kaur J., Bhatia S. S., “Coincidence and common fixed point results for generalized $\alpha $-$\psi $ contractive type mappings with applications”, Bull. Belg. Math. Soc. Simon Stevin, 22:2 (2015), 299–318 | DOI | MR | Zbl
[15] Zead M., Brailey S., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal., 7:2 (2006), 289–297 | MR | Zbl