Time-hybrid heat and wave equations on scattered $n$-dimensional coupled-jumping time scales
Problemy analiza, Tome 11 (2022) no. 2, pp. 42-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the exponential, hyperbolic, and trigonometric functions on $n$-dimensional coupled-jumping time scales (CJTS for short) are introduced. Based on this, we introduce the Laplace transform on $n$-dimensional CJTS and establish their related properties. Moreover, the homogeneous time-hybrid heat and wave equations are solved on scattered $n$-demensional CJTS using this Laplace transform.
Keywords: coupled-jumping time scales, partial dynamic equation
Mots-clés : multivariable calculus, Laplace transform.
@article{PA_2022_11_2_a3,
     author = {Z. Li and C. Wang and R. P. Agarwal},
     title = {Time-hybrid heat and wave equations on scattered $n$-dimensional coupled-jumping time scales},
     journal = {Problemy analiza},
     pages = {42--58},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a3/}
}
TY  - JOUR
AU  - Z. Li
AU  - C. Wang
AU  - R. P. Agarwal
TI  - Time-hybrid heat and wave equations on scattered $n$-dimensional coupled-jumping time scales
JO  - Problemy analiza
PY  - 2022
SP  - 42
EP  - 58
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a3/
LA  - en
ID  - PA_2022_11_2_a3
ER  - 
%0 Journal Article
%A Z. Li
%A C. Wang
%A R. P. Agarwal
%T Time-hybrid heat and wave equations on scattered $n$-dimensional coupled-jumping time scales
%J Problemy analiza
%D 2022
%P 42-58
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_2_a3/
%G en
%F PA_2022_11_2_a3
Z. Li; C. Wang; R. P. Agarwal. Time-hybrid heat and wave equations on scattered $n$-dimensional coupled-jumping time scales. Problemy analiza, Tome 11 (2022) no. 2, pp. 42-58. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a3/

[1] Ahlbrandt C.D., Morian C., “Partial differential equations on time scales”, J. Comput. Appl. Math., 141:1-2 (2002), 35–55 | DOI | MR | Zbl

[2] Agarwal R. P., Bohner M., Wong P. J. Y., “Sturm-Liouville eigenvalue problems on time scales”, Appl. Math. Comput., 99:2-3 (1999), 153–166 | DOI | MR | Zbl

[3] Bohner M., Peterson A., Dynamic Equations on Time Scales, Birkhăuser, Boston Inc., Boston, Mass. USA, 2001 | DOI | MR | Zbl

[4] Cabada A., Vivero D. R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Math. Comput. Modelling, 43:1-2 (2006), 194–207 | DOI | MR | Zbl

[5] Hoffacker J., “Basic partial dynamic equations on time scales”, J. Difference Equ. Appl., 8:4 (2002), 307–319 | DOI | MR | Zbl

[6] Hilger S., “Analysis on Measure Chains-A Unified Approach to Continuous and Discrete Calculus”, Results in Math., 18 (1990), 18–56 | DOI | MR | Zbl

[7] Hilger S., “Differential and difference calculus-united”, Nonlinear Anal., 30:5 (1997), 2683–2694 | DOI | MR | Zbl

[8] Jackson B., “Partial dynamic equations on time scales”, J. Comput. Appl. Math., 186:2 (2006), 391–415 | DOI | MR | Zbl

[9] Li Z., Wang C., Agarwal R.P., O'Regan D., “Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations on time scales”, Stud. Appl. Math., 146 (2021), 139–210 | DOI | MR | Zbl

[10] Wang C., Agarwal R. P., O'Regan D., Sakthivel R., Theory of Translation Closedness for Time Scales, Developments in Mathematics, 62, Springer, Switzerland, 2020 | DOI | MR | Zbl

[11] Wang C., Agarwal R. P., O'Regan D., “$\Pi$-semigroup for invariant under translations time scales and abstract weighted pseudo almost periodic functions with applications”, Dyn. Syst. Appl., 25 (2016), 1–28 | DOI | MR

[12] Wang C., Li Z., Agarwal R. P., O'Regan D., “Coupled-jumping timescale theory and applications to time-hybrid dynamic equations, convolution and Laplace transforms”, Dyn. Syst. Appl., 30 (2021), 461–508 | DOI

[13] Wang C., Agarwal R. P., O'Regan D., “Almost periodic fuzzy multidimensional dynamic systems and applications on time scales”, Chaos, Solitons Fract., 156 (2022) | DOI | MR

[14] Wang C., Li Z., Agarwal R. P., “A new quaternion hyper-complex space with hyper argument and basic functions via quaternion dynamic equations”, J. Geom. Anal., 32:2 (2022), 67 | DOI | MR

[15] Wang C., Li Z., Agarwal R. P., “Fundamental solution matrix and Cauchy properties of quaternion combined impulsive matrix dynamic equation on time scales”, Analele Stiintifice ale Universitatii Ovidius Constanta, 29 (2021), 107–130 | DOI | MR

[16] Wang C., Agarwal R. P., O'Regan D., “Calculus of fuzzy vector-valued functions and almost periodic fuzzy vector-valued functions on time scales”, Fuzzy Sets and Syst., 375 (2019), 1–52 | DOI | MR | Zbl

[17] Wang C., Agarwal R. P., “Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations”, Discr. Continu. Dyn. Syst.-Ser. B, 25:2 (2020), 781–798 | DOI | MR | Zbl

[18] Wang C., Li Z., Agarwal R. P., “Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales”, Discrete and Continuous Dynamical Systems-S, 15:2 (2022), 359–386 | DOI | MR | Zbl

[19] Wang C., Agarwal R., Sakthivel R., “Almost periodic oscillations for delay impulsive stochastic Nicholson's blowflies timescale model”, Comput. Appl. Math., 37 (2018), 3005–3026 | DOI | MR | Zbl