Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_2_a2, author = {Y. Habbachi and B. Bouras}, title = {A note for the {Dunkl-classical} polynomials}, journal = {Problemy analiza}, pages = {29--41}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a2/} }
Y. Habbachi; B. Bouras. A note for the Dunkl-classical polynomials. Problemy analiza, Tome 11 (2022) no. 2, pp. 29-41. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a2/
[1] Alaya J., Maroni P., “Symmetric Laguerre-Hahn forms of class $s=1$”, Int. Transf. and Spc. Funct., 4 (1996), 301–320 | DOI | MR | Zbl
[2] Alfaro M., Álvarez-Nodarse R., “A characterization of the classical orthogonal discrete and $q$-polynomials”, J. Comput. Appl. Math., 201 (2007), 48–54 | DOI | MR | Zbl
[3] Belmehdi S., “Generalized Gegenbauer polynomials”, J. Comput. Appl. Math., 133 (2001), 195–205 | DOI | MR | Zbl
[4] Ben Cheikh Y., Gaied M., “Characterizations of the Dunkl-classical orthogonal polynomials”, App. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl
[5] Bouras B., “Some characterizations of Dunkl-classical orthogonal polynomials”, J. Difference Equ. Appl., 20:8 (2014), 1240–1257 | DOI | MR | Zbl
[6] Bouras B., Habbachi Y., “Classification of nonsymmetric Dunkl-classical orthogonal polynomials”, J. Difference Equ. Appl., 23 (2017), 539–556 | DOI | MR | Zbl
[7] Bouras B., Alaya J., Habbachi Y., “A D-Pearson equation for Dunkl-classical orthogonal polynomials”, Facta Univ. Ser. Math. Inform., 31 (2016), 55–71 | MR | Zbl
[8] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978 | MR | Zbl
[9] Dunkl C. F., “Integral kernels reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl
[10] Marcellán F., Branquinho A., Petronilho J., “Classical orthogonal polynomials: A functional approach”, Acta. Appl. Math., 34 (1994), 283–303 | DOI | MR | Zbl
[11] Ghressi A, Khériji L., “A new characterization of the generalized Hermite form”, Bull Belg Math Soc Simon Stevin, 15 (2008), 561–567 | DOI | MR | Zbl
[12] Maroni P., “Sur la suite de polynômes orthogonaux associée à la forme $u=\delta_c+\lambda(x - c)^{-1} L$”, Period. Math. Hungar., 21:3 (1990), 223–248 | DOI | MR | Zbl
[13] Maroni P., “Variation around Classical orthogonal polynomials. Connected problems”, J. Comput. Appl. Math., 48 (1993), 133–155 | DOI | MR | Zbl
[14] Sghaier M., “A note on Dunkl-classical orthogonal polynomials”, Integral. Transforms. Spec. Funct., 24 (2012), 753–760 | DOI | MR