On generalizations of integral inequalities
Problemy analiza, Tome 11 (2022) no. 2, pp. 3-23

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study, several new generalized integral inequalities of the Hadamard and Simpson-type are obtained. The results were obtained for functions whose first and third derivatives are either convex or satisfy the Lipschitz condition or the conditions of the Lagrange theorem. In a particular case, these results not only confirm but also improve some upper bounds, well known in the literature for the Simpson and Hermite-Hadamard-type inequalities.
Keywords: convex function, Hermite–Hadamard inequality, Simpson-type inequality, Lipschitz conditions, Lagrange theorem, Riemann–Liouville fractional integral.
@article{PA_2022_11_2_a0,
     author = {B. Bayraktar and J. E. N\'apoles and F. Rabossi},
     title = {On generalizations of integral inequalities},
     journal = {Problemy analiza},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_2_a0/}
}
TY  - JOUR
AU  - B. Bayraktar
AU  - J. E. Nápoles
AU  - F. Rabossi
TI  - On generalizations of integral inequalities
JO  - Problemy analiza
PY  - 2022
SP  - 3
EP  - 23
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_2_a0/
LA  - en
ID  - PA_2022_11_2_a0
ER  - 
%0 Journal Article
%A B. Bayraktar
%A J. E. Nápoles
%A F. Rabossi
%T On generalizations of integral inequalities
%J Problemy analiza
%D 2022
%P 3-23
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_2_a0/
%G en
%F PA_2022_11_2_a0
B. Bayraktar; J. E. Nápoles; F. Rabossi. On generalizations of integral inequalities. Problemy analiza, Tome 11 (2022) no. 2, pp. 3-23. http://geodesic.mathdoc.fr/item/PA_2022_11_2_a0/