Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_1_a8, author = {Idrees Qasim}, title = {Refinement of some {Bernstein} type inequalities for rational functions}, journal = {Problemy analiza}, pages = {122--132}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a8/} }
Idrees Qasim. Refinement of some Bernstein type inequalities for rational functions. Problemy analiza, Tome 11 (2022) no. 1, pp. 122-132. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a8/
[1] Aziz A., Dawood Q. M., “Inequalities for a polynomial and its derivative”, J. Approx. Theory, 54 (1988), 306–313 | DOI
[2] Dubinin V. N., “Distortion theorems for polynomials on the circle”, Sb. Math., 191:12 (2000), 1797–1807
[3] Lax P. D., “Proof of a conjecture of P. Erdös on the derivative of a polynomial”, Bull. Amer. Math. Soc. (N.S.), 50 (1944), 509–513
[4] Xin Li, “A comparizon inequality for Rational Functions”, Proc. Amer. Math. Soc., 139:5 (2011), 1659–1665 | DOI
[5] Xin Li, Mohapatra R. N., Rodgriguez R. S., “Bernstein inequalities for rational functions with prescribed poles”, J. London Math. Soc., 51 (1995), 523–531 | DOI
[6] Rahman Q. I., Schmeisser G., Analytic Theory of Polynomials, Oxford University Press, New York, 2002
[7] Turán P., “Uber die ableitung von polynomen”, Compositio Math., 7 (1939), 89–95
[8] Wali S. L., Shah W. M., “Some applications of Dubinin's Lemma to rational functions with prescribed poles”, J. Math. Anal. Appl., 450 (2017), 769–779 | DOI