A note on the Becker-Stark type inequalities
Problemy analiza, Tome 11 (2022) no. 1, pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note is devoted to establishing the sharp bounds for the function $ x/\mathrm{tg}\, x $, thus refining the well-known Becker-Stark's inequality.
Keywords: Becker-Stark inequality, tangent function, monotonicity of functions, Bernoulli numbers.
@article{PA_2022_11_1_a4,
     author = {R. M. Dhaigude and Y. J. Bagul},
     title = {A note on the {Becker-Stark} type inequalities},
     journal = {Problemy analiza},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a4/}
}
TY  - JOUR
AU  - R. M. Dhaigude
AU  - Y. J. Bagul
TI  - A note on the Becker-Stark type inequalities
JO  - Problemy analiza
PY  - 2022
SP  - 58
EP  - 66
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a4/
LA  - en
ID  - PA_2022_11_1_a4
ER  - 
%0 Journal Article
%A R. M. Dhaigude
%A Y. J. Bagul
%T A note on the Becker-Stark type inequalities
%J Problemy analiza
%D 2022
%P 58-66
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_1_a4/
%G en
%F PA_2022_11_1_a4
R. M. Dhaigude; Y. J. Bagul. A note on the Becker-Stark type inequalities. Problemy analiza, Tome 11 (2022) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a4/

[1] Alzer H., “Sharp bounds for the Bernoulli numbers”, Archiv der Mathematik, 74:3 (2000), 207–211

[2] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal Invariants, Inequalities and Quasiconformal Maps, John Wiley and Sons, New York, 1997

[3] Bagul Y. J., Chesneau C., “New sharp bounds for tangent function”, Bull. Allahabad Math. Soc., 34:2 (2019), 277–282

[4] Bagul Y. J., Kostić M., Chesneau C., Dhaigude R. M., “On the generalized Becker-Stark type inequalities”, Acta Univ. Sapientiae Math., 13:1 (2021), 92–108 | DOI

[5] Banjac B., Makragić M., Malešević B., “Some notes on a method for proving inequalities by computer”, Results Math., 69:1 (2016), 161–176

[6] Becker M., Stark E. L., “On a hierarchy of quolynomial inequalities for $ \tan x$”, Univ., Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 1978, no. 602/633, 133–138

[7] Chen C.-P., Cheung W.-S., “Sharp Cusa and Becker-Stark inequalities”, J. Inequal. Appl., 2011, 136 | DOI

[8] Chen C.-P., Elezović N., “Sharp Redheffer-type and Becker-Stark-type inequalities with an application”, Math. Inequal. Appl., 21:4 (2018), 1059–1078

[9] Chen C.-P., Sándor J., “Sharp inequalities for trigonometric and hyperbolic functions”, J. Math. Inequal., 9:1 (2015), 203–217

[10] Debnath L., Mortici C., Zhu L., “Refinements of Jordan-Stečkin and Becker-Stark inequalities”, Results. Math., 67 (2015), 207–215

[11] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series and Products, Seventh Edition, Elsevier, 2007

[12] Malešević B., Mihailović B., “A minimax approximant in the theory of analytic inequalities”, Appl. Anal. Discrete Math., 15:2 (2021), 486–509 | DOI

[13] Nishizawa Y., “Sharp Becker-Stark's type inequalities with power exponential functions”, J. Inequal. Appl., 402 (2015) | DOI

[14] Wu Y., Bercu G., “New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method”, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 115 (2021), 87 | DOI

[15] Yang Z.-H., Jiang Y.-L., Song Y.-Q., Chu Y.-M., “Sharp inequalities for trigonometric functions”, Abstr. Appl. Anal., 2014, 601839, 18 pp.

[16] Zhu L., “Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities”, J. Math. Inequal., 7:4 (2013), 563–567

[17] Zhu L., Hua J.-K., “Sharpening the Becker-Stark inequalities”, J. Inequal. Appl., 2010, 931275

[18] Zhu L., “A refinement of the Becker-Stark inequalities”, Math. Notes, 93 (2013), 421–425 | DOI | DOI