A multivalued fixed point result with associated data dependece and stability study
Problemy analiza, Tome 11 (2022) no. 1, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, our primary result is on the existence of non-empty fixed point sets for a new multivalued function defined here. An admissibility condition is also postulated and used in the main theorem. In two separate sections, we present data dependence and stability results for the non-empty fixed-point sets of these mappings. Some consequences of the main theorem are discussed. The analysis is in the most general setting of metric spaces. An illustrative example is discussed, which shows that our existence theorem effectively extends some results in this line of research.
Keywords: fixed point, data dependence, stability, metric space, admissibility condition.
@article{PA_2022_11_1_a3,
     author = {B. S. Choudhury and N. Metiya and S. Kundu},
     title = {A multivalued fixed point result with associated data dependece and stability study},
     journal = {Problemy analiza},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a3/}
}
TY  - JOUR
AU  - B. S. Choudhury
AU  - N. Metiya
AU  - S. Kundu
TI  - A multivalued fixed point result with associated data dependece and stability study
JO  - Problemy analiza
PY  - 2022
SP  - 45
EP  - 57
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a3/
LA  - en
ID  - PA_2022_11_1_a3
ER  - 
%0 Journal Article
%A B. S. Choudhury
%A N. Metiya
%A S. Kundu
%T A multivalued fixed point result with associated data dependece and stability study
%J Problemy analiza
%D 2022
%P 45-57
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2022_11_1_a3/
%G en
%F PA_2022_11_1_a3
B. S. Choudhury; N. Metiya; S. Kundu. A multivalued fixed point result with associated data dependece and stability study. Problemy analiza, Tome 11 (2022) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a3/

[1] Alizadeh S., Moradlou F., Salimi P., “Some fixed point results for $(\alpha - \beta)$ - $(\psi - \varphi)$ - contractive mappings”, Filomat, 28:3 (2014), 635–647 | DOI

[2] Amar A. B., O'Regan D., Topological fixed point theory for singlevalued and multivalued mappings and applications, Springer International Publishing, Switzerland, 2016 | DOI

[3] Banach S., “Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales”, Fund Math., 3 (1922), 133–181

[4] Bose R. K., Mukherjee R. N., “Stability of fixed point sets and common fixed points of families of mappings”, Indian J. Pure Appl. Math., 11:9 (1980), 1130–1138

[5] Boyd D. W., Wong J. S. W., “On nonlinear contractions”, Proc. Amer. Math. Soc., 20 (1969), 458–464 | DOI

[6] Chifu C., Petruşel G., “Coupled fixed point results for $(\varphi,G)$-contractions of type (b) in b-metric spaces endowed with a graph”, J. Nonlinear Sci. Appl., 10 (2017), 671–683 | DOI

[7] Choudhury B. S., Metiya N., Kundu S., “Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators”, Chaos, Solitons and Fractals, 133 (2020) | DOI

[8] Feng Y., Liu S., “Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings”, J. Math. Anal. Appl., 317 (2006), 103–112 | DOI

[9] Harjani J., Sadarangani K., “Fixed point theorems for weakly contractive mappings in partially ordered sets”, Nonlinear Anal., 71 (2009), 3403–3410 | DOI

[10] Hussain N., Karapinar E., Salimi P., Akbar F., “$\alpha$-admissible mappings and related fixed point theorems”, J. Inequal. Appl., 2013, 114(2013) | DOI

[11] Kadelburg Z., Radenović S., “Fixed point and tripled fixed point theorems under Pata-type conditions in ordered metric spaces”, International Journal of Analysis and Applications, 6:1 (2014), 113–122

[12] Kirk W., Shahzad N., Fixed point theory in distance spaces, Springer International Publishing, Switzerland, 2014 | DOI

[13] Mier A., Keeler E., “A theorem on contraction mappings”, J. Math. Anal. Appl., 28 (1969), 326–329 | DOI

[14] Nadler S. B. Jr., “Multivalued contraction mapping”, Pac. J. Math., 30:2 (1969), 475–488

[15] Ran A. C. M., Reurings M. C. B., “A fixed point theorem in partially ordered sets and some applications to matrix equations”, Proc. Amer. Math. Soc., 132:5 (2004), 1435–1443 | DOI

[16] Rus I. A., Petruşel A., Sîntămărian A., “Data dependence of the fixed point set of some multivalued weakly Picard operators”, Nonlinear Anal., 52 (2003), 1947–1959 | DOI

[17] Samet B., Vetro C., Vetro P., “Fixed point theorems for $\alpha-\psi$- contractive type mappings”, Nonlinear Anal., 75 (2012), 2154–2165 | DOI

[18] Suzuki T., “A generalized Banach contraction principle that characterizes metric completeness”, Proc. Amer. Math. Soc., 136:5 (2008), 1861–1869 | DOI