Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_1_a3, author = {B. S. Choudhury and N. Metiya and S. Kundu}, title = {A multivalued fixed point result with associated data dependece and stability study}, journal = {Problemy analiza}, pages = {45--57}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a3/} }
TY - JOUR AU - B. S. Choudhury AU - N. Metiya AU - S. Kundu TI - A multivalued fixed point result with associated data dependece and stability study JO - Problemy analiza PY - 2022 SP - 45 EP - 57 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a3/ LA - en ID - PA_2022_11_1_a3 ER -
B. S. Choudhury; N. Metiya; S. Kundu. A multivalued fixed point result with associated data dependece and stability study. Problemy analiza, Tome 11 (2022) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a3/
[1] Alizadeh S., Moradlou F., Salimi P., “Some fixed point results for $(\alpha - \beta)$ - $(\psi - \varphi)$ - contractive mappings”, Filomat, 28:3 (2014), 635–647 | DOI
[2] Amar A. B., O'Regan D., Topological fixed point theory for singlevalued and multivalued mappings and applications, Springer International Publishing, Switzerland, 2016 | DOI
[3] Banach S., “Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales”, Fund Math., 3 (1922), 133–181
[4] Bose R. K., Mukherjee R. N., “Stability of fixed point sets and common fixed points of families of mappings”, Indian J. Pure Appl. Math., 11:9 (1980), 1130–1138
[5] Boyd D. W., Wong J. S. W., “On nonlinear contractions”, Proc. Amer. Math. Soc., 20 (1969), 458–464 | DOI
[6] Chifu C., Petruşel G., “Coupled fixed point results for $(\varphi,G)$-contractions of type (b) in b-metric spaces endowed with a graph”, J. Nonlinear Sci. Appl., 10 (2017), 671–683 | DOI
[7] Choudhury B. S., Metiya N., Kundu S., “Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators”, Chaos, Solitons and Fractals, 133 (2020) | DOI
[8] Feng Y., Liu S., “Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings”, J. Math. Anal. Appl., 317 (2006), 103–112 | DOI
[9] Harjani J., Sadarangani K., “Fixed point theorems for weakly contractive mappings in partially ordered sets”, Nonlinear Anal., 71 (2009), 3403–3410 | DOI
[10] Hussain N., Karapinar E., Salimi P., Akbar F., “$\alpha$-admissible mappings and related fixed point theorems”, J. Inequal. Appl., 2013, 114(2013) | DOI
[11] Kadelburg Z., Radenović S., “Fixed point and tripled fixed point theorems under Pata-type conditions in ordered metric spaces”, International Journal of Analysis and Applications, 6:1 (2014), 113–122
[12] Kirk W., Shahzad N., Fixed point theory in distance spaces, Springer International Publishing, Switzerland, 2014 | DOI
[13] Mier A., Keeler E., “A theorem on contraction mappings”, J. Math. Anal. Appl., 28 (1969), 326–329 | DOI
[14] Nadler S. B. Jr., “Multivalued contraction mapping”, Pac. J. Math., 30:2 (1969), 475–488
[15] Ran A. C. M., Reurings M. C. B., “A fixed point theorem in partially ordered sets and some applications to matrix equations”, Proc. Amer. Math. Soc., 132:5 (2004), 1435–1443 | DOI
[16] Rus I. A., Petruşel A., Sîntămărian A., “Data dependence of the fixed point set of some multivalued weakly Picard operators”, Nonlinear Anal., 52 (2003), 1947–1959 | DOI
[17] Samet B., Vetro C., Vetro P., “Fixed point theorems for $\alpha-\psi$- contractive type mappings”, Nonlinear Anal., 75 (2012), 2154–2165 | DOI
[18] Suzuki T., “A generalized Banach contraction principle that characterizes metric completeness”, Proc. Amer. Math. Soc., 136:5 (2008), 1861–1869 | DOI