Nonuniform super wavelets in $L^2(\mathbb{K})$
Problemy analiza, Tome 11 (2022) no. 1, pp. 3-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce the structure of nonuniform super wavelets over local fields. We shall also provide the characterization of nonuniform parseval frame, nonuniform semi-orthogonal pareseval multiwavelets, and nonuniform super wavelets over local fields.
Keywords: nonuniform super wavelet, Local field, Parseval frame.
Mots-clés : Fourier transform
@article{PA_2022_11_1_a0,
     author = {O. Ahmad and Abdullah A. H. Ahmadini and M. Ahmad},
     title = {Nonuniform super wavelets in $L^2(\mathbb{K})$},
     journal = {Problemy analiza},
     pages = {3--19},
     year = {2022},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a0/}
}
TY  - JOUR
AU  - O. Ahmad
AU  - Abdullah A. H. Ahmadini
AU  - M. Ahmad
TI  - Nonuniform super wavelets in $L^2(\mathbb{K})$
JO  - Problemy analiza
PY  - 2022
SP  - 3
EP  - 19
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PA_2022_11_1_a0/
LA  - en
ID  - PA_2022_11_1_a0
ER  - 
%0 Journal Article
%A O. Ahmad
%A Abdullah A. H. Ahmadini
%A M. Ahmad
%T Nonuniform super wavelets in $L^2(\mathbb{K})$
%J Problemy analiza
%D 2022
%P 3-19
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/PA_2022_11_1_a0/
%G en
%F PA_2022_11_1_a0
O. Ahmad; Abdullah A. H. Ahmadini; M. Ahmad. Nonuniform super wavelets in $L^2(\mathbb{K})$. Problemy analiza, Tome 11 (2022) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a0/

[1] Ahmad O., Bhat M. Y., Sheikh N. A., “Construction of Parseval Framelets Associated with GMRA on Local Fields of Positive Characteristic”, Numerical Functional Analysis and optimization, 2021 | DOI

[2] Ahmad O., Sheikh N. A., Shah F. A., “Fractional Multiresolution Analysis and Associated Scaling functions in $L^2(\mathbb R)$”, Analyis and Mathematical Physics, 11:47 (2021) | DOI

[3] Ahmad O., Sheikh N. A., “Novel Special Affine Wavelet transform and Associated Uncertainity Inequalities”, Int. Jour. of Geometric Methods in Mod. Phy., 24:4 (2021), 16 | DOI

[4] Ahmad O., Ahmad N., “Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields”, Math. Phys. Anal. and Geom., 23:47 (2020)

[5] Ahmad O., Sheikh N. A., Nisar K. S., Shah F. A., “Biorthogonal Wavelets on Spectrum”, Math. Methods in Appl. Sci., 2021, 1–12 | DOI

[6] Ahmad O., Sheikh N. A., Ali M. A., “Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in $L^2(\mathbb K)$”, Afrika Math., 31:7 (2020), 1145–1156 | DOI

[7] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14 (2004), 423–456

[8] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003

[9] Dai X., Larson D., Speegle D., “Wavelet sets in $\mathbb R^n$”, J. Fourier Anal. Appl., 3:4 (1997), 451–456

[10] Dai X., Diao Y., Gu Q., “On Super-Wavelets”, Oper. Theory Adv. Appl., 149, Birkhäuser, Basel, 2004, 153–165

[11] Duffin R. J., Shaeffer A. C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366

[12] Dutkay D. E., “Some equations relating multiwavelets and multiscaling functions”, J. Funct. Anal., 226:1 (2005), 1–20

[13] Dutkay D. E., and Jorgensen P., “Oversampling generates super-wavelets”, Proc. Amer. Math. Soc., 135:7 (2007), 2219–2227

[14] Daubechies I., Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992

[15] Gabardo J. P., Nashed M., “Nonuniform multiresolution analyses and spectral pairs”, J. Funct. Anal., 158 (1998), 209–241

[16] Gu Q., Han D., “Super-wavelets and decomposable wavelet frames”, J. Fourier Anal. Appl., 11:6 (2005), 683–696

[17] Shah F. A., Ahmad O., “Wave packet systems on local fields”, Journal of Geometry and Physics, 120 (2017), 5–18

[18] Shah F. A., Ahmad O., Rahimi A., “Frames Associated with Shift Invariant Spaces on Local Fields”, Filomat, 32:9 (2018), 3097–3110

[19] Shah F. A., Abdullah, “Nonuniform multiresolution analysis on local fields of positive characteristic”, Complex Anal. Opert. Theory, 9 (2015), 1589–1608

[20] Shukla N. K., Maury S. C., “Super-wavelets on local fields of positive characteristic”, Mathematische Nachrichten, 2017, 1–16

[21] Taibleson M. H., Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975

[22] Zhong-yan L., Xian-liang S., “On Parseval super-frame wavelets”, Appl. Math. J. Chinese. Univ. Ser. B, 27:2 (2012), 192–204