Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2022_11_1_a0, author = {O. Ahmad and Abdullah A. H. Ahmadini and M. Ahmad}, title = {Nonuniform super wavelets in $L^2(\mathbb{K})$}, journal = {Problemy analiza}, pages = {3--19}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2022_11_1_a0/} }
O. Ahmad; Abdullah A. H. Ahmadini; M. Ahmad. Nonuniform super wavelets in $L^2(\mathbb{K})$. Problemy analiza, Tome 11 (2022) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/PA_2022_11_1_a0/
[1] Ahmad O., Bhat M. Y., Sheikh N. A., “Construction of Parseval Framelets Associated with GMRA on Local Fields of Positive Characteristic”, Numerical Functional Analysis and optimization, 2021 | DOI
[2] Ahmad O., Sheikh N. A., Shah F. A., “Fractional Multiresolution Analysis and Associated Scaling functions in $L^2(\mathbb R)$”, Analyis and Mathematical Physics, 11:47 (2021) | DOI
[3] Ahmad O., Sheikh N. A., “Novel Special Affine Wavelet transform and Associated Uncertainity Inequalities”, Int. Jour. of Geometric Methods in Mod. Phy., 24:4 (2021), 16 | DOI
[4] Ahmad O., Ahmad N., “Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields”, Math. Phys. Anal. and Geom., 23:47 (2020)
[5] Ahmad O., Sheikh N. A., Nisar K. S., Shah F. A., “Biorthogonal Wavelets on Spectrum”, Math. Methods in Appl. Sci., 2021, 1–12 | DOI
[6] Ahmad O., Sheikh N. A., Ali M. A., “Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in $L^2(\mathbb K)$”, Afrika Math., 31:7 (2020), 1145–1156 | DOI
[7] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14 (2004), 423–456
[8] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003
[9] Dai X., Larson D., Speegle D., “Wavelet sets in $\mathbb R^n$”, J. Fourier Anal. Appl., 3:4 (1997), 451–456
[10] Dai X., Diao Y., Gu Q., “On Super-Wavelets”, Oper. Theory Adv. Appl., 149, Birkhäuser, Basel, 2004, 153–165
[11] Duffin R. J., Shaeffer A. C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366
[12] Dutkay D. E., “Some equations relating multiwavelets and multiscaling functions”, J. Funct. Anal., 226:1 (2005), 1–20
[13] Dutkay D. E., and Jorgensen P., “Oversampling generates super-wavelets”, Proc. Amer. Math. Soc., 135:7 (2007), 2219–2227
[14] Daubechies I., Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992
[15] Gabardo J. P., Nashed M., “Nonuniform multiresolution analyses and spectral pairs”, J. Funct. Anal., 158 (1998), 209–241
[16] Gu Q., Han D., “Super-wavelets and decomposable wavelet frames”, J. Fourier Anal. Appl., 11:6 (2005), 683–696
[17] Shah F. A., Ahmad O., “Wave packet systems on local fields”, Journal of Geometry and Physics, 120 (2017), 5–18
[18] Shah F. A., Ahmad O., Rahimi A., “Frames Associated with Shift Invariant Spaces on Local Fields”, Filomat, 32:9 (2018), 3097–3110
[19] Shah F. A., Abdullah, “Nonuniform multiresolution analysis on local fields of positive characteristic”, Complex Anal. Opert. Theory, 9 (2015), 1589–1608
[20] Shukla N. K., Maury S. C., “Super-wavelets on local fields of positive characteristic”, Mathematische Nachrichten, 2017, 1–16
[21] Taibleson M. H., Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975
[22] Zhong-yan L., Xian-liang S., “On Parseval super-frame wavelets”, Appl. Math. J. Chinese. Univ. Ser. B, 27:2 (2012), 192–204