Invariant subspaces in unbounded domains
Problemy analiza, Tome 10 (2021) no. 3, pp. 91-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We study subspaces of functions analytic in an unbounded convex domain of the complex plane and invariant with respect to the differentiation operator. This paper is devoted to the study of the problem of representing all functions from an invariant subspace by series of exponential monomials. These exponential monomials are eigenfunctions and associated functions of the differentiation operator in the invariant subspace. A simple geometric criterion of the fundamental principle is obtained. It is formulated just in terms of the Krisvosheev condensation index for the sequence of exponents of the mentioned exponential monomials.
Keywords: invariant subspace, fundamental principle, exponential monomial, entire function, series of exponents.
@article{PA_2021_10_3_a6,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Invariant subspaces in unbounded domains},
     journal = {Problemy analiza},
     pages = {91--107},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a6/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Invariant subspaces in unbounded domains
JO  - Problemy analiza
PY  - 2021
SP  - 91
EP  - 107
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a6/
LA  - en
ID  - PA_2021_10_3_a6
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Invariant subspaces in unbounded domains
%J Problemy analiza
%D 2021
%P 91-107
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a6/
%G en
%F PA_2021_10_3_a6
A. S. Krivosheev; O. A. Krivosheeva. Invariant subspaces in unbounded domains. Problemy analiza, Tome 10 (2021) no. 3, pp. 91-107. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a6/