Generalized quadratic spectrum approximation in bounded and unbounded cases
Problemy analiza, Tome 10 (2021) no. 3, pp. 53-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this paper is to generalize concepts in spectral theory in order to define the quadratic spectrum associated to three bounded linear operators. This concept was initially defined for three matrices. Moreover, we construct a new method of spectral approximation to avoid the problem of spectral pollution. This problem is resolved with the obtention of property U under the norm convergence or the collectively compact convergence. Also, we make numerical tests on the quadratic pencil associated to Schrödinger's operator in order to validate our theoretical results and to show the efficiency of our method.
Keywords: generalized quadratic spectrum, spectral approximation, property U, quadratic pencil.
@article{PA_2021_10_3_a4,
     author = {S. Kamouche and H. Guebbai and M. Ghiat and S. Segni},
     title = {Generalized quadratic spectrum approximation in bounded and unbounded cases},
     journal = {Problemy analiza},
     pages = {53--70},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a4/}
}
TY  - JOUR
AU  - S. Kamouche
AU  - H. Guebbai
AU  - M. Ghiat
AU  - S. Segni
TI  - Generalized quadratic spectrum approximation in bounded and unbounded cases
JO  - Problemy analiza
PY  - 2021
SP  - 53
EP  - 70
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a4/
LA  - en
ID  - PA_2021_10_3_a4
ER  - 
%0 Journal Article
%A S. Kamouche
%A H. Guebbai
%A M. Ghiat
%A S. Segni
%T Generalized quadratic spectrum approximation in bounded and unbounded cases
%J Problemy analiza
%D 2021
%P 53-70
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a4/
%G en
%F PA_2021_10_3_a4
S. Kamouche; H. Guebbai; M. Ghiat; S. Segni. Generalized quadratic spectrum approximation in bounded and unbounded cases. Problemy analiza, Tome 10 (2021) no. 3, pp. 53-70. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a4/

[1] Ahues M., Largillier A., Limaye B., Computations For Bounded Operators, CRC Press, 2001 | MR | Zbl

[2] Argyros I. K., Regmi S., Undergraduate Research at Cameron University on Iterative Procedures in Banach and Other Spaces, Nova Science Publisher, New York, USA, 2019

[3] Atkinson K. E., The Numerical Solution of Integral Equations of The Second Kind, Cambridge University Press, 1996 | MR

[4] Bairamov E., Çakar Ö., Çelebi A. O., “Quadratic Pencil of Schrödinger Operators With Spectral Singularities: Discrete Spectrum And Principal Functions”, Journal of Mathematical Analysis and Applications, 216:1 (1997), 303–320 | DOI | MR | Zbl

[5] Boulton L., “Spectral Pollution And Eigenvalue Bounds”, Applied Numerical Mathematics, 99 (2016), 1–23 | DOI | MR | Zbl

[6] Chen C., Ma C., “An Accelerated Cyclic-Reduction-Based Solvent Method For Solving Quadratic Eigenvalue Problem of Gyroscopic Systems”, Computers and Mathematics with Applications, 77:10 (2019), 2585–2595 | DOI | MR | Zbl

[7] Davies E. B., Plum M., “Spectral Pollution”, IMA journal of numerical analysis, 24:3 (2004), 417–438 | DOI | MR | Zbl

[8] Guebbai H., “Generalized Spectrum Approximation And Numerical Computation of Eigenvalues For Schrödinger's Operators”, Lobachevskii Journal of Mathematics, 34:1 (2013), 45–60 | DOI | MR | Zbl

[9] Guebbai H., Largillier A., “Spectra And Pseudo Spectra of a Convection-Diffusion Operator”, Integral Methods in Science and Engineering, 2011, 173–180 | DOI | MR | Zbl

[10] Huang T. M., Lin W. W., Tian H., Chen G. H., “The Full Spectrum of Large Sparse Palindromic Quadratic Eigenvalue Problems Arising From Surface Green's Function Calculations”, Journal of Computational Physics, 356 (2018), 340–355 | DOI | MR | Zbl

[11] Khellaf A., Guebbai H., Lemita S., Aissaoui M. Z., “Eigenvalues Computation by The Generalized Spectrum Method of Schr{$\ddot o$}dinger's Operator”, Computational and Applied Mathematics, 37:5 (2018), 5965–5980 | DOI | MR | Zbl

[12] Khellaf A., Merchela W., Guebbai H., “New Sufficient Conditions For The Computation of Generalized Eigenvalues”, Russian Mathematics, 65:2 (2021), 65–68 | DOI | MR | Zbl

[13] Khellaf A., Guebbai H., “A Note On Generalized Spectrum Approximation”, Lobachevskii Journal of Mathematics, 39:9 (2018), 1388–1395 | DOI | MR | Zbl

[14] Krall A. M., Bairamov E., Çakar Ö., “Spectrum and Spectral Singularities of a Quadratic Pencil of a Schrödinger Operator With a General Boundary Condition”, Journal of Differential Equations, 151:2 (1999), 252–267 | DOI | MR | Zbl

[15] Llobet X., Appert K., Bondeson A., Vaclavik J., “On Spectral Pollution”, Computer physics communications, 59:2 (1990), 199–216 | DOI | MR

[16] Rappaz J., Hubert J. S., Palencia E. S., Vassiliev D., “On Spectral Pollution in The Finite Element Approximation of Thin Elastic “membrane” Shells”, Numerische Mathematik, 75:4 (1997), 473–500 | DOI | MR | Zbl

[17] Regmi S., Optimized Iterative Methods with Applications in Diverse Disciplines, Nova Science Publisher, New York, USA, 2021

[18] Roach G. F., Green's Functions, Cambridge Univ. Press, 1982 | MR

[19] Tisseur F., Meerbergen K., “The Quadratic Eigenvalue Problem”, SIAM review, 43:2 (2001), 235–286 | DOI | MR | Zbl