Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions
Problemy analiza, Tome 10 (2021) no. 3, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a reproducing kernel radial Hilbert space of entire functions and prove the equivalence of several sufficient conditions for the existence of unconditional bases of reproducing kernels in such spaces.
Keywords: Hilbert spaces, entire functions, reproducing kernels, unconditional bases, Riesz bases.
@article{PA_2021_10_3_a3,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions},
     journal = {Problemy analiza},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions
JO  - Problemy analiza
PY  - 2021
SP  - 41
EP  - 52
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/
LA  - en
ID  - PA_2021_10_3_a3
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions
%J Problemy analiza
%D 2021
%P 41-52
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/
%G en
%F PA_2021_10_3_a3
K. P. Isaev; R. S. Yulmukhametov. Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions. Problemy analiza, Tome 10 (2021) no. 3, pp. 41-52. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/

[1] Seip K., “Density theorems for sampling and interpolation in the Bargmann-Fock space I”, Reine Angew. Math., 429 (1992), 91–106 | DOI | MR | Zbl

[2] Seip K., Wallsten R., “Density theorems for sampling and interpolation in the Bargmann-Fock space II”, Reine Angew. Math., 429 (1992), 107–113 http://eudml.org/doc/153434 | MR | Zbl

[3] Borichev A., Dhuez R., Kellay K., “Sampling and interpolation in large Bergman and Fock spaces”, Journal of Functional Analysis, 242:2 (2007), 563–606 | DOI | MR | Zbl

[4] Borichev A., Lyubarskii Yu., “Riesz bases of reproducing kernels in Fock type spaces”, Journal of the Institute of Mathematics of Jussieu, 9 (2010), 449–461 | DOI | MR | Zbl

[5] Baranov A., Belov Yu., Borichev A., “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Studia Mathematica, 236:2 (2017), 127–142 | DOI | MR | Zbl

[6] Isaev K. P., Yulmukhametov R. S., “Unconditional bases of reproducing kernels in Hilbert spaces of entire functions”, Ufa Math. J., 5:3 (2013), 67–76 | DOI | MR

[7] Isaev K. P., Lutsenko A. V., Yulmukhametov R. S., “Unconditional bases in weakly weighted spaces of entire functions”, St. Petersburg Math. J., 30:2 (2019), 253–265 | DOI | MR | Zbl

[8] Isaev K. P., Trunov K. V., Yulmukhametov R. S., “Equivalent Norms in Hilbert Spaces with Unconditional Bases of Reproducing Kernels”, Journal of Mathematical Sciences, 250 (2020), 310–321 | DOI | MR | Zbl

[9] Isaev K. P., Yulmukhametov R. S., “Unconditional bases in radial Hilbert spaces”, Vladikavkaz. Matem. Zhurn., 22:3 (2020), 85–99 (in Russian) | DOI | MR | Zbl

[10] Isaev K. P., Yulmukhametov R. S., “Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels”, Ufa Math. .J., 12:4 (2020), 55–63 | DOI | MR | Zbl

[11] Isaev K. P., Yulmukhametov R. S., “On a sufficient condition for the existence of unconditional bases of reproducing kernels in Hilbert spaces of entire functions”, Lobachevskii Journal of Mathematics, 42:6 (2021), 1154–1165 | DOI | MR | Zbl

[12] Lutsenko V. I., Yulmukhametov R. S., “Generalization of the Paley-Wiener theorem in weighted spaces”, Math. Notes, 48:5 (1990), 1131–1136 | DOI | MR | Zbl

[13] Bashmakov R. A., Isaev K. P., Yulmukhametov R. S., “On geometric characteristics of convex functions and Laplace integrals”, Ufimskij Matem. Zhurn., 2:1 (2010), 3–16 (in Russian) | MR | Zbl