Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_3_a3, author = {K. P. Isaev and R. S. Yulmukhametov}, title = {Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions}, journal = {Problemy analiza}, pages = {41--52}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/} }
TY - JOUR AU - K. P. Isaev AU - R. S. Yulmukhametov TI - Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions JO - Problemy analiza PY - 2021 SP - 41 EP - 52 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/ LA - en ID - PA_2021_10_3_a3 ER -
%0 Journal Article %A K. P. Isaev %A R. S. Yulmukhametov %T Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions %J Problemy analiza %D 2021 %P 41-52 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/ %G en %F PA_2021_10_3_a3
K. P. Isaev; R. S. Yulmukhametov. Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions. Problemy analiza, Tome 10 (2021) no. 3, pp. 41-52. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a3/
[1] Seip K., “Density theorems for sampling and interpolation in the Bargmann-Fock space I”, Reine Angew. Math., 429 (1992), 91–106 | DOI | MR | Zbl
[2] Seip K., Wallsten R., “Density theorems for sampling and interpolation in the Bargmann-Fock space II”, Reine Angew. Math., 429 (1992), 107–113 http://eudml.org/doc/153434 | MR | Zbl
[3] Borichev A., Dhuez R., Kellay K., “Sampling and interpolation in large Bergman and Fock spaces”, Journal of Functional Analysis, 242:2 (2007), 563–606 | DOI | MR | Zbl
[4] Borichev A., Lyubarskii Yu., “Riesz bases of reproducing kernels in Fock type spaces”, Journal of the Institute of Mathematics of Jussieu, 9 (2010), 449–461 | DOI | MR | Zbl
[5] Baranov A., Belov Yu., Borichev A., “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Studia Mathematica, 236:2 (2017), 127–142 | DOI | MR | Zbl
[6] Isaev K. P., Yulmukhametov R. S., “Unconditional bases of reproducing kernels in Hilbert spaces of entire functions”, Ufa Math. J., 5:3 (2013), 67–76 | DOI | MR
[7] Isaev K. P., Lutsenko A. V., Yulmukhametov R. S., “Unconditional bases in weakly weighted spaces of entire functions”, St. Petersburg Math. J., 30:2 (2019), 253–265 | DOI | MR | Zbl
[8] Isaev K. P., Trunov K. V., Yulmukhametov R. S., “Equivalent Norms in Hilbert Spaces with Unconditional Bases of Reproducing Kernels”, Journal of Mathematical Sciences, 250 (2020), 310–321 | DOI | MR | Zbl
[9] Isaev K. P., Yulmukhametov R. S., “Unconditional bases in radial Hilbert spaces”, Vladikavkaz. Matem. Zhurn., 22:3 (2020), 85–99 (in Russian) | DOI | MR | Zbl
[10] Isaev K. P., Yulmukhametov R. S., “Geometry of radial Hilbert spaces with unconditional bases of reproducing kernels”, Ufa Math. .J., 12:4 (2020), 55–63 | DOI | MR | Zbl
[11] Isaev K. P., Yulmukhametov R. S., “On a sufficient condition for the existence of unconditional bases of reproducing kernels in Hilbert spaces of entire functions”, Lobachevskii Journal of Mathematics, 42:6 (2021), 1154–1165 | DOI | MR | Zbl
[12] Lutsenko V. I., Yulmukhametov R. S., “Generalization of the Paley-Wiener theorem in weighted spaces”, Math. Notes, 48:5 (1990), 1131–1136 | DOI | MR | Zbl
[13] Bashmakov R. A., Isaev K. P., Yulmukhametov R. S., “On geometric characteristics of convex functions and Laplace integrals”, Ufimskij Matem. Zhurn., 2:1 (2010), 3–16 (in Russian) | MR | Zbl