Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_3_a2, author = {V. I. Danchenko and D. G. Chkalova}, title = {Bernstein-type estimates for the derivatives of trigonometric polynomials}, journal = {Problemy analiza}, pages = {31--40}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a2/} }
V. I. Danchenko; D. G. Chkalova. Bernstein-type estimates for the derivatives of trigonometric polynomials. Problemy analiza, Tome 10 (2021) no. 3, pp. 31-40. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a2/
[1] Arestov V. V., “On extremal properties of the nonnegative trigonometric polynomials”, Tr. Inst. Mat. Mekh., 1, 1992, 50–70 | MR | Zbl
[2] Beylkin G., Monzón L., “On generalized gaussian quadratures for exponentials and their applications”, Appl. Comput. Harmon. Anal., 12 (2002), 332–373 | DOI | MR | Zbl
[3] Belov A. S., “Some estimates for non-negative trigonometric polynomials and properties of these polynomials”, Izv. Ross. Akad. Nauk Ser. Mat., 67:4 (2003), 3–20 | DOI | MR | Zbl
[4] Bernstein S. N., Collected Works, v. 2, The Constructive Theory of Functions, USSR Academy of Sciences Publishing House, 1954 | MR
[5] Chunaev P., Danchenko V., “Approximation by amplitude and frequency operators”, J. Approx. Theory, 207 (2016), 1–31 | DOI | MR | Zbl
[6] Danchenko V. I., Chkalova D. G., “Algebraic analogs of Fejer inequalities”, J. Math. Sci., 255:5 (2021), 601–608 | DOI | MR | Zbl
[7] Danchenko V. I., Danchenko D. Ya., “Extraction of pairs of harmonics from trigonometric polynomials by phase-amplitude operators”, J. Math. Sci., 232:3 (2018), 322–337 | DOI | MR | Zbl
[8] Egerváry E., Szász O., “Some extremal problems in the field of trigonometric polynomials”, Math. Z., 27:1 (1928), 641–652 | DOI | MR | Zbl
[9] Gantmacher F. R., Theory of matrices, AMS Chelsea publishing, 1959 | MR
[10] Gashkov S. B., “The Fejer-Egervary-Szasz inequality for nonnegative trigonometric polynomials”, Math. Prosvesh., 9 (2005), 69–75 (in Russian)
[11] Grenander U., Szegö G., Toeplitz forms and their applications, Chelsea Publishing Company, New York, 1984 | MR | Zbl
[12] Kalmykov S., Nagy B., “Higher Markov and Bernstein inequalities and fast decreasing polynomials with prescribed zeros”, J. Approx. Theory, 226 (2018), 34–59 | DOI | MR | Zbl
[13] Pisarenko V. F., “The retrieval of harmonics from a covariance function”, Geophys. J. R. Astr. Soc., 33 (1973), 347–366 | DOI | Zbl
[14] Polya G., Szego G., Problems and theorems in analysis. II – Theory of functions, zeros, polynomials, determinants, number theory, geometry, Springer-Verlag, Berlin, 1998 | MR | Zbl
[15] Riesz M., “A trigonometric interpolation formula and some inequalities for polynomials”, Deutsche Math. Ver., 23 (1914), 354–368 | Zbl
[16] Stechkin S. B., “Certain extremal properties of positive trigonometric polynomials”, Mat. Zametki, 7 (1970), 411–422 | MR | Zbl
[17] Szegö G., “Über einen Satz des Herrn Serge Bernstein”, Schriften Königsberg, 5 (1928), 59–70 | MR | Zbl
[18] Vasilchenkova D. G., Danchenko V. I., “Extraction of harmonics from trigonometric polynomials by phase-amplitude operators”, St. Petersburg Math. J., 32 (2021), 215–232 | DOI | MR | Zbl
[19] Vasilchenkova D. G., Danchenko V. I., “Extraction of several harmonics from trigonometric polynomials. Fejer-type inequalities”, Proc. Steklov Inst. Math., 308 (2020), 92–106 | DOI | MR | Zbl