Multiparameter Fractional Differentiation with non singular kernel
Problemy analiza, Tome 10 (2021) no. 3, pp. 15-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce here Caputo and Riemann-Liouville type non singular kernel very general multi parameter left and right side fractional derivatives and we prove their continuity. These have the advantage to describe accurately complex situations and phenomena and we can measure their fractional smoothness with memory and nonlocality. Then, we derive related left and right fractional integral inequalities of Hardy, Opial and Hilbert-Pachpatte types, also of Hardy type involving convexity.
Keywords: fractional derivative, multi parameters, fractional integral inequalities.
Mots-clés : Non singular Kernel
@article{PA_2021_10_3_a1,
     author = {George A. Anastassiou},
     title = {Multiparameter {Fractional} {Differentiation} with non singular kernel},
     journal = {Problemy analiza},
     pages = {15--30},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/}
}
TY  - JOUR
AU  - George A. Anastassiou
TI  - Multiparameter Fractional Differentiation with non singular kernel
JO  - Problemy analiza
PY  - 2021
SP  - 15
EP  - 30
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/
LA  - en
ID  - PA_2021_10_3_a1
ER  - 
%0 Journal Article
%A George A. Anastassiou
%T Multiparameter Fractional Differentiation with non singular kernel
%J Problemy analiza
%D 2021
%P 15-30
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/
%G en
%F PA_2021_10_3_a1
George A. Anastassiou. Multiparameter Fractional Differentiation with non singular kernel. Problemy analiza, Tome 10 (2021) no. 3, pp. 15-30. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/

[1] Anastassiou G., Fractional Differentiation Inequalities, Springer, Heidelberg–New York, 2009 | MR | Zbl

[2] Anastassiou G., Intelligent Comparisons: Analytic Inequalities, Springer, Heidelberg–New York, 2016 | MR | Zbl

[3] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model”, Therm. Sci., 20:2 (2016), 763–769 | DOI

[4] Caputo M., Fabrizion M., “A new Definition of Fractional Derivative without Singular Kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 73–85

[5] Hewith E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, New York–Berlin, 1965 | MR

[6] Losada J., Nieto J. J., “Properties of a New Fractional Derivative without Singular Kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 87–92

[7] Saxena R. K., Kalla S. L., Ravi Saxena, “Multivariate analogue of generalized Mittag-Leffler function”, Integral Transforms and special Functions, 22:7 (2011), 533–0548 | DOI | MR

[8] Srivastava H. M., Daoust M. C., “Certain generalized Newmann expansion associated with Kompe' de Feriet function”, Nederl. Akad. Wetensch. Proc. Ser. A 72 (Indag. Math.), 31 (1969), 449–457 | MR

[9] Srivastava H. M., Daoust M. C., “A note on the convergence of Kompe' de Feriet's double hypergeometric series”, Math. Nachr., 53 (1972), 151–159 | DOI | MR | Zbl

[10] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Limited, New York, 1985 | MR | Zbl