Multiparameter Fractional Differentiation with non singular kernel
Problemy analiza, Tome 10 (2021) no. 3, pp. 15-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce here Caputo and Riemann-Liouville type non singular kernel very general multi parameter left and right side fractional derivatives and we prove their continuity. These have the advantage to describe accurately complex situations and phenomena and we can measure their fractional smoothness with memory and nonlocality. Then, we derive related left and right fractional integral inequalities of Hardy, Opial and Hilbert-Pachpatte types, also of Hardy type involving convexity.
Keywords: fractional derivative, multi parameters, fractional integral inequalities.
Mots-clés : Non singular Kernel
@article{PA_2021_10_3_a1,
     author = {George A. Anastassiou},
     title = {Multiparameter {Fractional} {Differentiation} with non singular kernel},
     journal = {Problemy analiza},
     pages = {15--30},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/}
}
TY  - JOUR
AU  - George A. Anastassiou
TI  - Multiparameter Fractional Differentiation with non singular kernel
JO  - Problemy analiza
PY  - 2021
SP  - 15
EP  - 30
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/
LA  - en
ID  - PA_2021_10_3_a1
ER  - 
%0 Journal Article
%A George A. Anastassiou
%T Multiparameter Fractional Differentiation with non singular kernel
%J Problemy analiza
%D 2021
%P 15-30
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/
%G en
%F PA_2021_10_3_a1
George A. Anastassiou. Multiparameter Fractional Differentiation with non singular kernel. Problemy analiza, Tome 10 (2021) no. 3, pp. 15-30. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/