Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_3_a1, author = {George A. Anastassiou}, title = {Multiparameter {Fractional} {Differentiation} with non singular kernel}, journal = {Problemy analiza}, pages = {15--30}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/} }
George A. Anastassiou. Multiparameter Fractional Differentiation with non singular kernel. Problemy analiza, Tome 10 (2021) no. 3, pp. 15-30. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a1/
[1] Anastassiou G., Fractional Differentiation Inequalities, Springer, Heidelberg–New York, 2009 | MR | Zbl
[2] Anastassiou G., Intelligent Comparisons: Analytic Inequalities, Springer, Heidelberg–New York, 2016 | MR | Zbl
[3] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model”, Therm. Sci., 20:2 (2016), 763–769 | DOI
[4] Caputo M., Fabrizion M., “A new Definition of Fractional Derivative without Singular Kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 73–85
[5] Hewith E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, New York–Berlin, 1965 | MR
[6] Losada J., Nieto J. J., “Properties of a New Fractional Derivative without Singular Kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 87–92
[7] Saxena R. K., Kalla S. L., Ravi Saxena, “Multivariate analogue of generalized Mittag-Leffler function”, Integral Transforms and special Functions, 22:7 (2011), 533–0548 | DOI | MR
[8] Srivastava H. M., Daoust M. C., “Certain generalized Newmann expansion associated with Kompe' de Feriet function”, Nederl. Akad. Wetensch. Proc. Ser. A 72 (Indag. Math.), 31 (1969), 449–457 | MR
[9] Srivastava H. M., Daoust M. C., “A note on the convergence of Kompe' de Feriet's double hypergeometric series”, Math. Nachr., 53 (1972), 151–159 | DOI | MR | Zbl
[10] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Limited, New York, 1985 | MR | Zbl