On the homotopy classification of positively homogeneous functions of three variables
Problemy analiza, Tome 10 (2021) no. 2, pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem of homotopy classification of the set $\mathcal{F}$ of positively homogeneous smooth functions in three variables whose gradients do not vanish at nonzero points. This problem is of interest in the study of periodic and bounded solutions of systems of ordinary differential equations with the main positive homogeneous nonlinearity. The subset $\mathcal{F}_0\subset\mathcal{F}$ is presented and for any function $g(x)\in\mathcal{F}_0$, a formula for calculating the rotation $\gamma (\nabla g)$ of its gradient $\nabla g(x)$ on the boundary of the unit ball $|x| 1$ is derived. It is proved that any function from $\mathcal{F}$ is homotopic to some function from $\mathcal{F}_0$.
Keywords: positively homogeneous function, vector field rotation.
Mots-clés : homotopy, homotopy classification
@article{PA_2021_10_2_a5,
     author = {E. Mukhamadiev and A. N. Naimov},
     title = {On the homotopy classification of positively homogeneous functions of three variables},
     journal = {Problemy analiza},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a5/}
}
TY  - JOUR
AU  - E. Mukhamadiev
AU  - A. N. Naimov
TI  - On the homotopy classification of positively homogeneous functions of three variables
JO  - Problemy analiza
PY  - 2021
SP  - 67
EP  - 78
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_2_a5/
LA  - en
ID  - PA_2021_10_2_a5
ER  - 
%0 Journal Article
%A E. Mukhamadiev
%A A. N. Naimov
%T On the homotopy classification of positively homogeneous functions of three variables
%J Problemy analiza
%D 2021
%P 67-78
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_2_a5/
%G en
%F PA_2021_10_2_a5
E. Mukhamadiev; A. N. Naimov. On the homotopy classification of positively homogeneous functions of three variables. Problemy analiza, Tome 10 (2021) no. 2, pp. 67-78. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a5/

[1] Translations of Mathematical Monographs, 26, American Mathematical Society, Providence, R.I., 1969 | DOI | MR | MR | Zbl | Zbl

[2] Borisovich Yu. G., Bliznyakov N. M., Izrailevich Ya. A., Fomenko T. N., Introduction to topology, URSS, M., 2015 | MR

[3] Doklady Mathematics, 54:3 (1996), 923–925 | MR | Zbl

[4] Mukhamadiev E., “On the construction of the correct guiding function for a system of differential equations”, Trudy Instituta Matematiki Natsional'noy Akad. Nauk Belarusi, 2:1 (1999), 119–127 (in Russian)

[5] Mukhamadiev E., Naimov A. N., “Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 1, 2021, 157–172 | DOI | MR