Rational approximations of Lipschitz functions from the Hardy class on the line
Problemy analiza, Tome 10 (2021) no. 2, pp. 54-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a rate of uniform approximations on the real line of summable Lipschitz functions $f$ having a summable Hilbert transform $Hf$ by normalized logarithmic derivatives of rational functions. Inequalities between different metrics of the logarithmic derivatives of algebraic polynomials on the line are also considered.
Keywords: logarithmic derivative of a rational function, simple partial fraction, uniform approximation, inequality between different metrics.
Mots-clés : Hilbert transform
@article{PA_2021_10_2_a4,
     author = {M. A. Komarov},
     title = {Rational approximations of {Lipschitz} functions from the {Hardy} class on the line},
     journal = {Problemy analiza},
     pages = {54--66},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a4/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Rational approximations of Lipschitz functions from the Hardy class on the line
JO  - Problemy analiza
PY  - 2021
SP  - 54
EP  - 66
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_2_a4/
LA  - en
ID  - PA_2021_10_2_a4
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Rational approximations of Lipschitz functions from the Hardy class on the line
%J Problemy analiza
%D 2021
%P 54-66
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_2_a4/
%G en
%F PA_2021_10_2_a4
M. A. Komarov. Rational approximations of Lipschitz functions from the Hardy class on the line. Problemy analiza, Tome 10 (2021) no. 2, pp. 54-66. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a4/

[1] Aleksandrov A. B., “Norm of the Hilbert transformation in a space of Hölder functions”, Funct. Anal. Appl, 9:2 (1975), 94–96 | DOI | MR | Zbl

[2] Borodin P. A., Kosukhin O. N., “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl

[3] Chunaev P. V., Danchenko V. I., “Quadrature formulas with variable nodes and Jackson–Nikolskii inequalities for rational functions”, J. Approx. Theory, 228 (2018), 1–20 | DOI | MR | Zbl

[4] Danchenko V. I., “Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles”, Sb. Math., 82:2 (1995), 425–440 | DOI | MR

[5] Danchenko V. I., Dodonov A. E., “Estimates for $L_p$-norms of simple partial fractions”, Russian Math. (Iz. VUZ), 58:6 (2014), 6–15 | DOI | MR | Zbl

[6] Gonchar A. A., “Converse theorems concerning best approximations by rational functions”, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 347–356 (in Russian) | MR | Zbl

[7] King F. W., Hilbert transforms, v. 1, Encyclopedia of mathematics and its applications, 124, Cambridge Univ. Press, Cambridge, 2009 | DOI | MR | Zbl

[8] Kober H., “A note on Hilbert's operator”, Bull. Amer. Math. Soc., 48 (1942), 421–427 | DOI | MR | Zbl

[9] Komarov M. A., “Approximation by linear fractional transformations of simple partial fractions and their differences”, Russian Math. (Iz. VUZ), 62:3 (2018), 23–33 | DOI | MR | Zbl

[10] Komarov M. A., “Distribution of the logarithmic derivative of a rational function on the line”, Acta Math. Hungar., 163:2 (2021), 623–639 | DOI | MR

[11] Komarov M. A., “Metric property of a real polynomial”, Bull. London Math. Soc., 53:2 (2021), 336–346 | DOI | MR | Zbl

[12] Petrushev P. P., Popov V. A., Rational approximation of real functions, Encyclopedia of mathematics and its applications, 28, Cambridge Univ. Press, Cambridge, 1987 | DOI | MR | Zbl

[13] Protasov V. Yu., “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | MR | Zbl