Constructions of weaving continuous g-frames for operators in Hilbert spaces
Problemy analiza, Tome 10 (2021) no. 2, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of weaving continuous K-g-frames in Hilbert spaces, which are the generalization of weaving K-g-frames and weaving c-g-frames. We prove some new results for these frames, focusing on the constructions of c-K-g-woven frames for Hilbert spaces by certain operators with specific properties. Finally, we verify a Paley-Wiener type perturbation of these frames.
Keywords: c-K-g-frame, continuous weaving frame, c-K-g-woven frames.
@article{PA_2021_10_2_a0,
     author = {E. Alizadeh and V. Sadri},
     title = {Constructions of weaving continuous g-frames for operators in {Hilbert} spaces},
     journal = {Problemy analiza},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a0/}
}
TY  - JOUR
AU  - E. Alizadeh
AU  - V. Sadri
TI  - Constructions of weaving continuous g-frames for operators in Hilbert spaces
JO  - Problemy analiza
PY  - 2021
SP  - 3
EP  - 17
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_2_a0/
LA  - en
ID  - PA_2021_10_2_a0
ER  - 
%0 Journal Article
%A E. Alizadeh
%A V. Sadri
%T Constructions of weaving continuous g-frames for operators in Hilbert spaces
%J Problemy analiza
%D 2021
%P 3-17
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_2_a0/
%G en
%F PA_2021_10_2_a0
E. Alizadeh; V. Sadri. Constructions of weaving continuous g-frames for operators in Hilbert spaces. Problemy analiza, Tome 10 (2021) no. 2, pp. 3-17. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a0/

[1] Abdollahpour M. R., Faroughi M. H., “Continuous G-frames in Hilbert spaces”, Southeast Asian Bull. Math., 32:1 (2008), 1–19 | MR | Zbl

[2] Ali S. T., Antoine J. P., Gazeau J. P., “Continuous frames in Hilbert spaces”, Ann. Phys., 222:1 (1993), 1–37 | DOI | MR | Zbl

[3] Alizadeh E., Rahimi A., Osgooei E., Rahmani M., “Continuous K-g-frames in Hilbert spaces”, Bull. Iranian Math. Soc., 45:4 (2019), 1091–1104 | DOI | MR | Zbl

[4] Alizadeh E., Rahimi A., Osgooei E., Rahmani M., “Some Properties of Continuous K-g-frames in Hilbert spaces”, U.P.B. Sci. Bull., Series A, 81:3 (2019), 43–52 | MR

[5] Alizadeh E., Sadri V., “On Continuous weaving G-frames in Hilbert spaces”, Wavelets and Linear Algebra. Note, 7:1 (2020), 23–36 | DOI | MR

[6] Bemrose T., Casazza P. G., Gröchenic K., Lammers M. C., Lynch R. G., “Weaving frames”, Operators and Matrices, 10:4 (2016), 1093–1116 | DOI | MR | Zbl

[7] Casazza P. G. Kutyniok G., “Frames of Subspaces”, Contemp. Math. Anal., 345 (2004), 87–114 | DOI | MR

[8] Casazza P. G., Lynch R. G., “Weaving properties of Hilbert space frames”, International Conference on Sampling Theory and Applications (SampTA), 2015, 110–114 | MR

[9] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2016 | MR | Zbl

[10] Deepshikha and Vashisht L. K.,, “On perturbation of local atoms for subspaces”, Poincare J. Anal. Appl., 2015, no. 2, 129–137 | MR | Zbl

[11] Dehghan M. A., Hasankhani Fard M. A., “G-continuous frames and coorbit spaces”, Acta Math. Acad. Paedagogicae Nyíregyháziensis. (N.S.), 24:3 (2008), 373–383 | MR | Zbl

[12] Douglas R. G., “No majorization, factorization and range inclusion of operators on Hilbert space”, Pro. Amer. Math. Sco., 17:2 (1966), 413–415 | DOI | MR | Zbl

[13] Duffin R. J., Schaeffer A. C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc. Anal., 72:1 (1952), 341–366 | DOI | MR | Zbl

[14] Faroughi M. H., Osgooei E., “C-frames and c-Bessel mappings”, Bull. Iranian Math. Soc., 38:1 (2012), 203–222 | MR | Zbl

[15] Feichtinger H. G., Werther T., “Atomic Systems for Subspaces”, Proceedings SampTA, FL Anal., Orlando, 2001, 163–165

[16] Găvruţa L., “Frames for Operators”, Appl. Comp. Harm. Anal., 32 (2012), 139–144 | DOI | MR

[17] Kaiser G., A Friendly Guide to Wavelets, Birkhäuser, Boston, 1994 | MR | Zbl

[18] Rahimlou Gh., Ahmadi R., Jafarizadeh M. A., Nami S., “Continuous K-frames and their dual in Hilbert spaces”, Sahand Comm. Math. Anal., 17:3 (2020), 145–160 | Zbl

[19] Sadri V., Rahimlou Gh., Ahmadi R., Zarghami Farfar R., “Construction of K-g-fusion frames and their dual in Hilbert spaces”, Bull. Transilvania Un. Braşov, Series III, 13(62):1 (2020), 17–32 | MR

[20] Sadri V., Ahmadi R., Jafarizadeh M. A., Nami S., “Continuous K-fusion frames in Hilbert spaces”, Sahand Comm. Math. Anal., 17:1 (2020), 39–55 | Zbl

[21] Sun W., “G-Frames and G-Riesz bases”, J. Math. Anal. Appl., 326 (2006), 437–452 | DOI | MR

[22] Vashisht L. K., Deepshikha, “On continuous weaving frames”, Adv. Pure Appl. Math., 8:1 (2017), 15–31 | DOI | MR | Zbl